题面在这里

description

在一个圆环上给出\(n\)条端点在圆环上的绳子,

每次在圆环上切割的轨迹是一条直线,可以将可以将所有与这条直线相交的绳子切断。

求切割次数的最小值。

data range

\[n\le 2\times 10^5
\]

solution

洛谷月赛题目真的棒

某题弱化版

我们记一个圆环的点割

将每条直线相对应的两个端点染上同种颜色,之后在圆环上选\(2k\)个切割点,使得每两个相邻的切割点之间没有同色点的方案

例如一个\(n=3\)的圆环:

我们能够找到一个对应\(k=2\)的点割的方案为:

那么我们知道:每个点割都对应着题目中满足要求的一个方案

考虑构造方案,只要将每两个切割点之间的点隔开即可

于是我们每隔\(k\)个点连一条边,就构造出了一个可行的方案:

这样我们把题目转化为求一个圆环的最小点割

考虑枚举第一个点的位置,断环为链:



于是我们只要向后贪心,找到其能延伸最远的位置即可:



在找到一个最小点割的同时,我们也找到了一个对应的方案;

如果我们现在直接枚举第一个点的位置,复杂度应该是\(O(n^2)\)的

我们考虑距离最短的一组点对,这组点对之间必然有一个切割点,因此我们只要在这组点对之间枚举切割点即可,假设这组点对的最短距离为\(d\),那么我们每一轮贪心地跳是\(O(n/d)\)的(只要你预处理每个点最远能够延伸的点,每一次跳的长度必然\(\ge d\)),故时间复杂度为\(O(n)\)。

code

#include<bits/stdc++.h>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cstring>
#include<complex>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<ctime>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define FILE "a"
#define mp make_pair
#define pb push_back
#define RG register
#define il inline
using namespace std;
typedef unsigned long long ull;
typedef vector<int>VI;
typedef long long ll;
typedef double dd;
const dd eps=1e-10;
const int mod=1e9+7;
const int N=200010;
const int inf=2147483647;
const dd pi=acos(-1);
il ll read(){
RG ll data=0,w=1;RG char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch<='9'&&ch>='0')data=data*10+ch-48,ch=getchar();
return data*w;
} il void file(){
freopen(FILE".in","r",stdin);
freopen(FILE".out","w",stdout);
} int n,s,c[N<<1],p[N][7],ans=inf;
int nxt[N<<1];
il int dist(int i,int j){return (i<j)?(j-i):(j-i+n);} il int go(int s){
RG int cnt=0;
for(RG int i=s,b=0;!b||i<s;i=nxt[i]){
cnt++;if(nxt[i]<i)b=1;
}
return (cnt+1)/2;
} int main()
{
n=read();n<<=1;
for(RG int i=1,x,y;i<=n/2;i++){
x=read();y=read();c[x]=c[y]=i;
if(dist(y,x)<dist(x,y))swap(x,y);p[i][0]=x;p[i][8]=y;
if(!s||dist(p[s][0],p[s][9])>dist(p[i][0],p[i][10]))s=i;
}
nxt[p[s][0]]=p[s][11];
for(RG int i=(p[s][0]-2+n)%n+1;i!=p[s][0];i=(i-2+n)%n+1){
nxt[i]=nxt[i%n+1];
if(i==p[c[i]][0]&&dist(i,nxt[i])>dist(i,p[c[i]][12]))
nxt[i]=p[c[i]][13];
if(i==p[c[i]][14]&&dist(i,nxt[i])>dist(i,p[c[i]][0]))
nxt[i]=p[c[i]][0];
}
for(RG int i=p[s][0]%n+1;i!=p[s][15]%n+1;i=i%n+1)ans=min(ans,go(i));
printf("%d\n",ans);
return 0;
}

[luoguT30208]太极剑的更多相关文章

  1. LuoguP4704 太极剑

    题面 测试要求 Bob 尽可能快地切断 n 根绳子. 所有绳子的端点两两不同,所以共有 2n 个端点.这些端点被捆在一个圆上,等距离分布.我们把这些端点按顺时针方向编号为 1 到 2n. Bob 每次 ...

  2. 洛谷P4704 太极剑(乱搞)

    题意 题目链接 Sol 不会正解 写了发暴力过了,貌似跑的还挺快?.. // luogu-judger-enable-o2 // luogu-judger-enable-o2 #include< ...

  3. 洛谷 P4704 太极剑【贪心】

    首先考虑分割线能分割一条线当且仅当分割线一个端点在这条线的ab中间,另一端点在外面,也就是分割线对应的一条弧不能同时有这条线的两个端点 每条线的两端点都染同色,然后分段,一段里面颜色互不相同,分割线就 ...

  4. Java 征途:行者的地图

    前段时间应因缘梳理了下自己的 Java 知识体系, 成文一篇望能帮到即将走进或正在 Java 世界跋涉的程序员们. 第一张,基础图 大约在 2003 年我开始知道 Java 的(当时还在用 Delph ...

  5. 记一次.NET代码重构

    好久没写代码了,终于好不容易接到了开发任务,一看时间还挺充足的,我就慢慢整吧,若是遇上赶进度,基本上直接是功能优先,完全不考虑设计.你可以认为我完全没有追求,当身后有鞭子使劲赶的时候,神马设计都是浮云 ...

  6. 【道德经】漫谈实体、对象、DTO及AutoMapper的使用

    写在前面 实体和值对象 实体和对象 故常无欲以观其妙,常有欲以观其徼 初始实体和演化实体 代码中的DTO AutoMapper实体转换 后记 实体(Entity).对象(Object).DTO(Dat ...

  7. NET代码重构

    记一次.NET代码重构   好久没写代码了,终于好不容易接到了开发任务,一看时间还挺充足的,我就慢慢整吧,若是遇上赶进度,基本上直接是功能优先,完全不考虑设计.你可以认为我完全没有追求,当身后有鞭子使 ...

  8. [转]Java 征途:行者的地图

    前段时间应因缘梳理了下自己的 Java 知识体系, 成文一篇望能帮到即将走进或正在 Java 世界跋涉的程序员们. 第一张,基础图 大约在 2003 年我开始知道 Java 的(当时还在用 Delph ...

  9. Java 征途:行者的地图 (转)

    http://www.cnblogs.com/mindwind/p/5251430.html Java 征途:行者的地图   前段时间应因缘梳理了下自己的 Java 知识体系, 成文一篇望能帮到即将走 ...

随机推荐

  1. 【LG1975】[国家集训队]排队

    [LG1975][国家集训队]排队 题面 洛谷 题解 又是一个偏序问题 显然\(CDQ\) 交换操作不好弄怎么办? 可以看成两次删除两次插入 排序问题要注意一下 代码 #include <ios ...

  2. Java多线程之volatile与synchronized比较

    可见性: JAVA内存模型: java为了加快程序的运行效率,对一些变量的操作是在寄存器或者CPU缓存上进行的,后面再同步到主存中 看上图,线程在运行的过程中,会从主内存里面去去变量,读到自己的空间内 ...

  3. selenium自动化之显式等待和EC(expected_conditions)模块

    很多人都有这种经历,selenium脚本当前运行没问题,过了一段时间再运行就报错了,然后过几天又好了.其中的原因估计60%的人都知道,是因为元素加载这块有问题.通常的解决方案就是加上sleep或者隐式 ...

  4. 前端开发工程师 - 05.产品前端架构 - 协作流程 & 接口设计 & 版本管理 & 技术选型 &开发实践

    05.产品前端架构 第1章--协作流程 WEB系统 角色定义 协作流程 职责说明 第2章--接口设计 概述 接口规范 规范应用 本地开发 第3章--版本管理 见 Java开发工程师(Web方向) - ...

  5. 【转】MMO即时战斗:技能实现

    转自 http://blog.csdn.net/cyblueboy83/article/details/41628743 一.前言 基本所有MMO游戏无论是回合制.策略类.即时战斗等等类型都需要有相应 ...

  6. 剑指offer-二叉搜索树的后序遍历序列23

    题目描述 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. class Solution: def Verif ...

  7. tensorflow模型持久化保存和加载--深度学习-神经网络

    模型文件的保存 tensorflow将模型保持到本地会生成4个文件: meta文件:保存了网络的图结构,包含变量.op.集合等信息 ckpt文件: 二进制文件,保存了网络中所有权重.偏置等变量数值,分 ...

  8. DeepLearning Intro - sigmoid and shallow NN

    This is a series of Machine Learning summary note. I will combine the deep learning book with the de ...

  9. 共识算法 pos,Dpos

    在之前讲解了比特币中的共识算法pow(proot of work),我们先来简单的回顾一下. 新的交易将会广播给所有节点. 每个节点将都会讲新的交易收集到一个区块中. 每个节点都在为其区块收集困难的工 ...

  10. addeventlistener和attachevent

    区别: 1.ie8及以下版本前者无效,只能使用后者: 2,关于第三个参数,如果是true则捕获状态触发,为false;则为冒泡状态触发 何为冒泡,何为捕获? 这就好比捕鱼,冒泡吗,鱼向上吐泡泡,所以当 ...