【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp
题目描述
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.
输入
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
输出
输出最小费用
样例输入
5 4
3
4
2
1
4
样例输出
1
题解
斜率优化dp
设f[i]为第i个物品为某容器末尾时前i个物品的最小总代价,
那么就有f[i]=f[j]+(i-j-1+sum[i]-sum[j]-l)^2
=f[j]+(t[i]-t[j]-l')^2
其中t[i]为前缀和sum[i]与i的和,l'为l+1(代码中直接将l++),目的是方便下一步推导与计算。
展开平方并整理可得f[j]+(t[j]+l')^2=2*t[i]*t[j]+(f[i]+2*t[i]*l'-t[i]^2)。
这是y=kx+b的形式,并且要求的是b的最大值,于是维护一个下凸包即可。
#include <cstdio>
#include <algorithm>
#define y(i) (f[i] + (t[i] + l) * (t[i] + l))
#define x(i) t[i]
using namespace std;
int q[50010] , head , tail;
long long f[50010] , t[50010];
int main()
{
int n , i;
long long l , a;
scanf("%d%lld" , &n , &l);
l ++ ;
for(i = 1 ; i <= n ; i ++ )
scanf("%lld" , &a) , t[i] = t[i - 1] + a + 1;
for(i = 1 ; i <= n ; i ++ )
{
while(head < tail && y(q[head + 1]) - y(q[head]) <= ((x(q[head + 1]) - x(q[head]))) * 2 * t[i]) head ++ ;
f[i] = f[q[head]] + (t[i] - t[q[head]] - l) * (t[i] - t[q[head]] - l);
while(head < tail && (y(i) - y(q[tail])) * (x(q[tail]) - x(q[tail - 1])) < (x(i) - x(q[tail])) * (y(q[tail]) - y(q[tail - 1]))) tail -- ;
q[++tail] = i;
}
printf("%lld\n" , f[n]);
return 0;
}
【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp的更多相关文章
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp
玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...
- P3195 [HNOI2008]玩具装箱TOY 斜率优化dp
传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...
- [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
- bzoj1010: [HNOI2008]玩具装箱toy——斜率优化
方程 $\Large f(i)=min(f(j)+(s(i)-s(j)-1-L)^2)$ 其中$s(i)$为i的前缀和再加上$i$ 对于某个$i$若$j$比$k$优,则 $\large f(j)+(s ...
- [BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...
随机推荐
- ASCII、Unicode、UTF-8编码关系
由于计算机是美国人发明的,因此,最早只有127个字符被编码到计算机里,也就是大小写英文字母.数字和一些符号,这个编码表被称为ASCII编码,比如大写字母A的编码是65,小写字母z的编码是122.但是要 ...
- Spring框架之Filter应用
在web.xml中进行配置,对所有的URL请求进行过滤,就像"击鼓传花"一样,链式处理. 配置分为两种A和B. 在web.xml中增加如下内容: <filter> &l ...
- angualarjs $location服务
$location服务 angular使用内置的$location服务来监听.操作url,包括以下功能: - 获取.监听.改变地址栏的URL: - 与URL实现双向数据绑定(地址栏变动.前进后退或者点 ...
- atomic是绝对的线程安全么?为什么?如果不是,那应该如何实现?
atomic不是绝对的线程安全.atomic的本意是指属性的存取方法是线程安全的,并不保证整个对象是线程安全的 @property (atomic, assign) int intA; //线程A f ...
- dubbo入门(一)
1.简介 Dubbo由阿里巴巴开源,是一个分布式服务框架,致力于提供高性能和透明化的RPC(远程过程调用)远程服务调用方案,以及SOA服务治理方案.如果没有分布式的需求,Dbubbo是不需要的,其本质 ...
- C#原型模式
如下: [Serializable] public class ModelNewTable : ICloneable { public object Clone() { using (var stre ...
- 图的基本算法(BFS和DFS)
图是一种灵活的数据结构,一般作为一种模型用来定义对象之间的关系或联系.对象由顶点(V)表示,而对象之间的关系或者关联则通过图的边(E)来表示. 图可以分为有向图和无向图,一般用G=(V,E)来表示图. ...
- 「日常训练」Duff in the Army (Codeforces Round #326 Div.2 E)
题意(CodeForces 588E) 给定一棵\(n\)个点的树,给定\(m\)个人(\(m\le n\))在哪个点上的信息,每个点可以有任意个人:然后给\(q\)个询问,每次问\(u\)到\(v\ ...
- tpo-10 C1 How to get photographs exhibited
第 1 段 1.Listen to a conversation between a student and her Photography professor. 听一段学生和摄影学教授的对话. 第 ...
- 小球下落 (Dropping Balls,UVA 679)
题目描述: 题目思路: 1.直接用数组模拟二叉树下落过程 //超时 #include <iostream> #include <cstring> using namespace ...