【BZOJ】3566: [SHOI2014]概率充电器
【算法】树型DP+期望DP
【题意】一棵树上每个点均有直接充电概率qi%,每条边有导电概率pi%,问期望有多少结点处于充电状态?
【题解】引用自:【BZOJ3566】【SHOI2014】概率充电器 树形DP 概率DP by 空灰冰魂
最大的难点在于计算每个点充电期望时,两个节点各自的期望都会影响对方的期望。
所以考虑转化对象,改为求每个节点充不上电的期望,充不上电就不用考虑两者的相互影响。
fi表示结点i由子结点和自身充不上电的概率
gi表示结点i由父结点充不上电的概率
第一次DFS:
hi表示结点i对父亲贡献的概率
fi=(1-qi)*∏h[son[i]]
hi=fi+(1-fi)*(1-pi) pi为i到父亲的导线通电概率
☆两者发生其一用概率加法,多者都必须发生用概率乘法,P(A+B)=P(A)+P(B)-P(AB)注意去除交集。
第二次DFS:
当前结点x,父亲结点y。
t表示父亲y对结点x的贡献。
t=gy*(fy/hx) 注意hx为0的情况(除0)
gx=t+(1-t)*(1-pi) pi为x到y的导线概率
最终答案:ans=Σ(1-fi*gi) 因为概率和期望都是0~1,所以一样。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=;
struct edge{int v,from;double p;}e[maxn*];
int n,first[maxn],tot;
double q[maxn],f[maxn],g[maxn],h[maxn],fw[maxn];
void insert(int u,int v,double w)
{tot++;e[tot].v=v;e[tot].p=w;e[tot].from=first[u];first[u]=tot;}
void dfs1(int x,int fa)
{
f[x]=-q[x];
for(int i=first[x];i;i=e[i].from)if(e[i].v!=fa)
{
dfs1(e[i].v,x);
f[x]*=h[e[i].v];
}else fw[x]=e[i].p;
h[x]=f[x]+(-f[x])*(-fw[x]);
}
void dfs2(int x,int y)
{
double t;
if(!h[x])t=;else t=g[y]*f[y]/h[x];
g[x]=t+(-t)*(-fw[x]);
for(int i=first[x];i;i=e[i].from)if(e[i].v!=y)dfs2(e[i].v,x);
}
int main()
{
scanf("%d",&n);
for(int i=;i<n;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
insert(u,v,1.0*w/);
insert(v,u,1.0*w/);
}
for(int i=;i<=n;i++){int u;scanf("%d",&u);q[i]=1.0*u/;}
dfs1(,);
dfs2(,);
double ans=;
for(int i=;i<=n;i++)ans+=-f[i]*g[i];
printf("%.6lf",ans);
return ;
}
【BZOJ】3566: [SHOI2014]概率充电器的更多相关文章
- BZOJ 3566: [SHOI2014]概率充电器( 树形dp )
通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...
- BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]
3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...
- bzoj 3566: [SHOI2014]概率充电器
Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器:"采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率 ...
- ●BZOJ 3566 [SHOI2014]概率充电器
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3566题解: 概率dp,树形dp 如果求出每个点被通电的概率t, 那么期望答案就是t1×1+t ...
- BZOJ.3566.[SHOI2014]概率充电器(概率DP 树形DP)
BZOJ 洛谷 这里写的不错,虽然基本还是自己看转移... 每个点的贡献都是\(1\),所以直接求每个点通电的概率\(F_i\),答案就是\(\sum F_i\). 把\(F_x\)分成:父节点通电给 ...
- bzoj 3566 [SHOI2014]概率充电器——树型
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3566 一眼看上去高斯消元.n^3不行. 竟然直接去看了TJ.发现树型dp.一下想到了自己还没 ...
- bzoj 3566: [SHOI2014]概率充电器【树形概率dp】
设g[u]为这个点被儿子和自己充上电的概率,f[u]为被儿子.父亲和自己充上电的概率 然后根据贝叶斯公式(好像是叫这个),1.P(A+B)=P(A)+P(B)-P(A)*P(B),2.P(A)=(P( ...
- bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp
题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...
- BZOJ 3566 [SHOI2014]概率充电器 ——期望DP
期望DP. 补集转化,考虑不能被点亮的情况, 然后就是三种情况,自己不能亮,父亲不能点亮它,儿子不能点亮它. 第一次计算比较容易,第二次计算的时候需要出去第一次的影响,因为一条线只能传导一次 #inc ...
- 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)
3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...
随机推荐
- java集合类小结
1 集合的框架体系 List简介 集合的使用场合 List(链表|线性表)和Set(集) java.util.Collection ---| Collection 描述所有接口的共性 ----| Li ...
- j2ee—框架(2):Servlet+JSP实现基本的登录功能(v2.0)
该部分将逻辑判断在UserBean中进行处理,而且不采用配置的方式去实现,为了区分开两种实现方法的不同,在这里将之前设置的内容只是备注掉,并不会删除,也方便之后将两种方式进行对比. 第一部分 Logi ...
- lintcode-144-交错正负数
144-交错正负数 给出一个含有正整数和负整数的数组,重新排列成一个正负数交错的数组. 注意事项 不需要保持正整数或者负整数原来的顺序. 样例 给出数组[-1, -2, -3, 4, 5, 6],重新 ...
- LintCode-374.螺旋矩阵
螺旋矩阵 给定一个包含 m x n 个要素的矩阵,(m 行, n 列),按照螺旋顺序,返回该矩阵中的所有要素. 样例 给定如下矩阵: [ [ 1, 2, 3 ], [ 4, 5, 6 ...
- [剑指Offer] 61.序列化二叉树
题目描述 请实现两个函数,分别用来序列化和反序列化二叉树 /* struct TreeNode { int val; struct TreeNode *left; struct TreeNode *r ...
- HUAS 1483 mex(离线+线段树)
实在是太弱了.... 考虑离线,从mex[l,r]向mex[l,r+1]转移,显然是没啥东西可以记录的... 从mex[l,r]向mex[l+1,r]转移,记x=mex[l,r],如果[l+1,r]不 ...
- Necklace - CF613C
Ivan wants to make a necklace as a present to his beloved girl. A necklace is a cyclic sequence of b ...
- bzoj3709: [PA2014]Bohater 贪心
~~~题面~~~ 题解: 首先有一个比较明显的策略,肯定先要把能带给自己受益的先选完,然后再以最佳状态去打那些会给自己带来损失的怪. 对于前一部分(可以带来受益的怪),显然我们需要先从代价小的打起,因 ...
- Android 常用控件自定义样式RadioButton、CheckBox、ProgressBar、
一.RadioButton / CheckBox 系统自带的RadioButton/CheckBox的样式,注定满足不了实际运用中的情况,有时候自定义自己的样式:此次把自己中工作学习过程中所学到的东西 ...
- 存储引擎(Mysql)
最常使用的2种存储引擎:1.Myisam是Mysql的默认存储引擎,当create创建新表时,未指定新表的存储引擎时,默认使用Myisam.每个MyISAM在磁盘上存储成三个文件.文件名都和表名相同, ...