★   输入文件:nt2011_exp.in   输出文件:nt2011_exp.out   简单对比
时间限制:1 s   内存限制:512 MB

【试题来源】

2011中国国家集训队命题答辩

【问题描述】

gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案。试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,…,ai,每个选项成为正确答案的概率都是相等的。lc采取的策略是每道题目随机写上1-ai的某个数作为答案选项,他用不了多少时间就能期望做对道题目。gx则是认认真真地做完了这n道题目,可是等他做完的时候时间也所剩无几了,于是他匆忙地把答案抄到答题纸上,没想到抄错位了:第i道题目的答案抄到了答题纸上的第i+1道题目的位置上,特别地,第n道题目的答案抄到了第1道题目的位置上。现在gx已经走出考场没法改了,不过他还是想知道自己期望能做对几道题目,这样他就知道会不会被lc鄙视了。
我们假设gx没有做错任何题目,只是答案抄错位置了。

【输入格式】

n很大,为了避免读入耗时太多,输入文件只有5个整数参数n, A, B, C, a1,由上交的程序产生数列a。下面给出pascal/C/C++的读入语句和产生序列的语句(默认从标准输入读入):

// for pascal
readln(n,A,B,C,q[1]);
for i:=2 to n do
q[i] := (int64(q[i-1]) * A + B) mod 100000001;
for i:=1 to n do
q[i] := q[i] mod C + 1;

// for C/C++
scanf("%d%d%d%d%d",&n,&A,&B,&C,a+1);
for (int i=2;i<=n;i++)
a[i] = ((long long)a[i-1] * A + B) % 100000001;
for (int i=1;i<=n;i++)
a[i] = a[i] % C + 1;

选手可以通过以上的程序语句得到n和数列a(a的元素类型是32位整数),n和a的含义见题目描述。

【输出格式】

输出一个实数,表示gx期望做对的题目个数,保留三位小数。

【样例输入】

3 2 0 4 1

【样例输出】

1.167

【样例说明】

a[] = {2,3,1}

正确答案 gx的答案 做对题目 出现概率
{1,1,1} {1,1,1} 3 1/6
{1,2,1} {1,1,2} 1 1/6
{1,3,1} {1,1,3} 1 1/6
{2,1,1} {1,2,1} 1 1/6
{2,2,1} {1,2,2} 1 1/6
{2,3,1} {1,2,3} 0 1/6

共有6种情况,每种情况出现的概率是1/6,gx期望做对(3+1+1+1+1+0)/6 = 7/6题。(相比之下,lc随机就能期望做对11/6题)

【数据规模和约定】

对于30%的数据 n≤10, C≤10
对于80%的数据 n≤10000, C≤10
对于90%的数据 n≤500000, C≤100000000
对于100%的数据 2≤n≤10000000, 0≤A,B,C,a1≤100000000

数学问题 数学期望

我们可以惊喜地发现每道题的情况是独立的。

对于第i+1道题,有$a[i+1]$种可能的正解,有$a[i]$种可能填上去的答案。

那么总情况数有$a[i+1]*a[i]$种,其中正确的情况有$min(a[i+1],a[i])$种,约分一下得到答案就是$ \sum 1/max(a[i+1],a[i]) $

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,A,B,C,a[mxn];
double ans=;
int main(){
freopen("nt2011_exp.in","r",stdin);
freopen("nt2011_exp.out","w",stdout);
int i,j;
scanf("%d%d%d%d%d",&n,&A,&B,&C,a+);
for(int i=;i<=n;i++)
a[i]=((long long)a[i-]*A+B)%;
for(int i=;i<=n;i++)
a[i]=a[i]%C+;
for(i=;i<n;i++)ans+=/(double)max(a[i],a[i+]);
ans+=/(double)max(a[],a[n]);
printf("%.3f\n",ans);
return ;
}

COGS1882 [国家集训队2011]单选错位的更多相关文章

  1. Bzoj 2134: [国家集训队2011]单选错位(期望)

    2134: 单选错位 Time Limit: 10 Sec Memory Limit: 259 MB Description Input n很大,为了避免读入耗时太多,输入文件只有5个整数参数n, A ...

  2. AC日记——[国家集训队2011]旅游(宋方睿) cogs 1867

    [国家集训队2011]旅游(宋方睿) 思路: 树链剖分,边权转点权: 线段树维护三个东西,sum,max,min: 当一个区间变成相反数时,sum=-sum,max=-min,min=-max: 来, ...

  3. cogs 1901. [国家集训队2011]数颜色

    Cogs 1901. [国家集训队2011]数颜色 ★★★   输入文件:nt2011_color.in   输出文件:nt2011_color.out   简单对比时间限制:0.6 s   内存限制 ...

  4. BZOJ 2150 cogs 1861 [国家集训队2011]部落战争

    题目描述 lanzerb的部落在A国的上部,他们不满天寒地冻的环境,于是准备向A国的下部征战来获得更大的领土. A国是一个M*N的矩阵,其中某些地方是城镇,某些地方是高山深涧无人居住.lanzerb把 ...

  5. happiness[国家集训队2011(吴确)]

    [试题来源] 2011中国国家集训队命题答辩 [问题描述] 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科 ...

  6. 1893. [国家集训队2011]等差子序列(bitset)

    ★★   输入文件:nt2011_sequence.in   输出文件:nt2011_sequence.out   简单对比时间限制:0.3 s   内存限制:512 MB [试题来源] 2011中国 ...

  7. bzoj2144 【国家集训队2011】跳跳棋

    Description 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他 ...

  8. COGS.1901.[模板][国家集训队2011]数颜色(带修改莫队)

    题目链接 COGS BZOJ2120 洛谷P1903 /* Add和Subd函数中的vis不能直接设为=1或=0 比如 l=1,r=0 -> l=3,r=5 时,[1,5]的vis标记全都是1 ...

  9. COGS1871 [国家集训队2011]排队(魏铭)

    bzoj:http://www.lydsy.com/JudgeOnline/problem.php?id=2141 cogs:http://cogs.pro:8080/cogs/problem/pro ...

随机推荐

  1. Java中终止正在运行线程

    问题:java 中如何让一个正在运行的线程终止掉? Demo_1: class TT implements Runnable { private boolean flag = true; @Overr ...

  2. Thinkphp5的ajax接口实现

    前一篇讲到thinkphp5从数据库获取数据之后赋给视图view,前一篇从数据渲染方式来说是服务端数据渲染,这一章则是浏览器端数据渲染.按照知识总结依据来划分,这是两种不同的技术场景. 下面介绍具体的 ...

  3. 从1到n的阶乘的和(python)

    今天在百度上逛一些ctf的平台,偶然发现一道编程题,于是乎,便用我刚刚学的python知识解了这道题 题目的描述是这样的: 计算1!+2!+3!+...+6666!后五位. 这个计算量很大啊,我还是用 ...

  4. php缓存技术——memcache常用函数详解

    php缓存技术——memcache常用函数详解 2016-04-07 aileen PHP编程 Memcache函数库是在PECL(PHP Extension Community Library)中, ...

  5. Flink中的数据传输与背压

    一图道尽心酸: 大的原理,上游的task产生数据后,会写在本地的缓存中,然后通知JM自己的数据已经好了,JM通知下游的Task去拉取数据,下游的Task然后去上游的Task拉取数据,形成链条. 但是在 ...

  6. centos7编译安装redis遇坑

    编译redis时:make cc Command not found 原因分析:没有安装gcc,执行: yum install gcc 编译redis时:error: jemalloc/jemallo ...

  7. RT-thread内核之小内存管理算法

     一.动态内存管理 动态内存管理是一个真实的堆(Heap)内存管理模块,可以在当前资源满足的情况下,根据用户的需求分配任意大小的内存块.而当用户不需要再使用这些内存块时,又可以释放回堆中供其他应用分配 ...

  8. BZOJ4773 负环(floyd+倍增)

    倍增floyd求出经过<=2k条边时两点间最短路,一个点到自身的最短路就是包含该点的最小环.然后倍增找答案即可.注意初始时到自身的最短路设为0,这样求出的最短路就是经过<=2k条边的而不是 ...

  9. C# 类反射创建对象实例

    object obj= Activator.CreateInstance(Type  type);

  10. [洛谷P5091]【模板】欧拉定理

    题目大意:求$a^b\bmod m(a\leqslant10^9,m\leqslant10^6,b\leqslant10^{2\times10^7})$ 题解:扩展欧拉定理:$$a^b\equiv\b ...