代码:

%% ------------------------------------------------------------------------
%% Output Info about this m-file
fprintf('\n***********************************************************\n');
fprintf(' <DSP using MATLAB> Problem 8.11 \n\n');
banner();
%% ------------------------------------------------------------------------ %d = 0.10
%d = 0.05
d = 0.01 a1 = (2-d)/(1+d);
a2 = (2-d)*(1-d)/((2+d)*(1+d)); % digital IIR 2nd-order allpass filter
b = [a2 a1 1]
a = [1 a1 a2] figure('NumberTitle', 'off', 'Name', 'Problem 8.11 Pole-Zero Plot')
set(gcf,'Color','white');
zplane(b,a);
title(sprintf('Pole-Zero Plot, d=%.2f',d));
%pzplotz(b,a); [db, mag, pha, grd, w] = freqz_m(b, a); % ---------------------------------------------------------------------
% Choose the gain parameter of the filter, maximum gain is equal to 1
% ---------------------------------------------------------------------
gain1=max(mag) % with poles
K = 1
[db, mag, pha, grd, w] = freqz_m(K*b, a); figure('NumberTitle', 'off', 'Name', 'Problem 8.11 IIR allpass filter')
set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]);
set(gca,'YTickMode','manual','YTick',[-60,-30,0])
set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75,2]);
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75,2]);
set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians'); subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay');
set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75,2]);
%set(gca,'YTickMode','manual','YTick',[0,1.0]); figure('NumberTitle', 'off', 'Name', 'Problem 8.11 IIR allpass filter')
set(gcf,'Color','white');
plot(w/pi, -pha/w); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Delay in samples'); % Impulse Response
fprintf('\n----------------------------------');
fprintf('\nPartial fraction expansion method: \n');
[R, p, c] = residuez(K*b,a)
MR = (abs(R))' % Residue Magnitude
AR = (angle(R))'/pi % Residue angles in pi units
Mp = (abs(p))' % pole Magnitude
Ap = (angle(p))'/pi % pole angles in pi units
[delta, n] = impseq(0,0,20);
h_chk = filter(K*b,a,delta); % check sequences % ------------------------------------------------------------------------------------------------
% gain parameter K
% ------------------------------------------------------------------------------------------------
%h = 0.2202 * ((-0.9385) .^ n) + (-0.8308) * ((-0.7887) .^ n) + 1.3509 * delta; %d=0.1
%h = 0.1099 * ((-0.9688) .^ n) + (-0.4112) * ((-0.8884) .^ n) + 1.1619 * delta; %d=0.05
h = 0.0220 * ((-0.9937) .^ n) + (-0.0820) * ((-0.9766) .^ n) + 1.0305 * delta; %d=0.01
% ------------------------------------------------------------------------------------------------ figure('NumberTitle', 'off', 'Name', 'Problem 8.11 IIR allpass filter, h(n) by filter and Inv-Z ')
set(gcf,'Color','white'); subplot(2,1,1); stem(n, h_chk); grid on; %axis([0 2 -60 10]);
xlabel('n'); ylabel('h\_chk'); title('Impulse Response sequences by filter'); subplot(2,1,2); stem(n, h); grid on; %axis([0 1 -100 10]);
xlabel('n'); ylabel('h'); title('Impulse Response sequences by Inv-Z'); [db, mag, pha, grd, w] = freqz_m(h, [1]); figure('NumberTitle', 'off', 'Name', 'Problem 8.11 IIR filter, h(n) by Inv-Z ')
set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]);
set(gca,'YTickMode','manual','YTick',[-60,-30,0])
set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians'); subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay');
set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
%set(gca,'YTickMode','manual','YTick',[0,1.0]);

  运行结果:

这里放d=0.1的运行结果。

二阶全通滤波器的留数、极点

系统零极点图,可以看出,两个零点都在单位圆外,幅角为π

方法一,利用系统函数直接形式,将脉冲序列做输入,得到脉冲响应h,得到系统幅度谱、相位谱和群延迟,如下图

方法二,将二阶全通系统函数部分分式展开,然后查表求逆z变换,得到脉冲响应h_chk

幅度谱、相位谱和群延迟,可以看到,ω=π时,幅度有衰减

可见,两种方法得到的脉冲响应h有区别,我们将各自前21个元素列出来,方框处二者稍有区别。

但,为何有区别,没搞懂,欢迎各位博友不吝赐教。

《DSP using MATLAB》Problem 8.11的更多相关文章

  1. 《DSP using MATLAB》Problem 7.11

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  2. 《DSP using MATLAB》Problem 6.11

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  3. 《DSP using MATLAB》Problem 5.11

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  4. 《DSP using MATLAB》Problem 4.11

    代码: %% ---------------------------------------------------------------------------- %% Output Info a ...

  5. 《DSP using MATLAB》Problem 7.16

    使用一种固定窗函数法设计带通滤波器. 代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...

  6. 《DSP using MATLAB》Problem 7.6

    代码: 子函数ampl_res function [Hr,w,P,L] = ampl_res(h); % % function [Hr,w,P,L] = Ampl_res(h) % Computes ...

  7. 《DSP using MATLAB》Problem 5.21

    证明: 代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...

  8. 《DSP using MATLAB》Problem 5.20

    窗外的知了叽叽喳喳叫个不停,屋里温度应该有30°,伏天的日子难过啊! 频率域的方法来计算圆周移位 代码: 子函数的 function y = cirshftf(x, m, N) %% -------- ...

  9. 《DSP using MATLAB》Problem 5.14

    说明:这两个小题的数学证明过程都不会,欢迎博友赐教. 直接上代码: %% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...

随机推荐

  1. Nginx常用功能配置二

    Nginx常用功能配置二 Nginx location匹配设置 location作用:可以根据用户请求的URI来执行不同的应用,根据用户请求的网站的地址URL匹配. location语法: locat ...

  2. Docker学习の更改Docker的目录

    一.更改虚拟磁盘的目录 虚拟机的默认存储位置是C:\Users\Administrator\.docker\machine\machines ,后期docke镜像文件会不断增加,为了给系统盘减负,最好 ...

  3. 《移山之道》第十一章:两人合作 读书笔记 PB16110698 第六周(~4.15)

     本周在考虑阅读材料时,我翻阅了<移山之道>,正好看到这一章:两人合作,心想:正好,我们正值结对作业的紧要关头,书中两人合作的宝贵经验和教诲应当对我们有很大帮助.于是,我开始一边在ddl苦 ...

  4. 随笔记录 linux命令 2019.7.29

    系统命令 一. type   查看命令是内部命令还是内部命令 help   帮助 man   在线帮助 cd      切换目录 pwd    查看所在路径 stat     查看文件详细信息 ls  ...

  5. CTR预估的常用方法

    1.CTR CTR预估是对每次广告的点击情况做出预测,预测用户是点击还是不点击. CTR预估和很多因素相关,比如历史点击率.广告位置.时间.用户等. CTR预估模型就是综合考虑各种因素.特征,在大量历 ...

  6. Java中的常量池

    JVM中有: Class文件常量池.运行时常量池.全局字符串常量池.基本类型包装类对象 常量池 Class文件常量池: class文件是一组以字节为单位的二进制数据流,在java代码的编译期间,编写的 ...

  7. Android Butterknife使用方法总结

    原文链接:http://blog.csdn.net/donkor_/article/details/77879630 前言: ButterKnife是一个专注于Android系统的View注入框架,以 ...

  8. day3:python运算符及数据类型(str)(int)

    运算符 算数运算 :a = 10 * 10赋值运算:a = a + 1 a+=1 比较运算:a = 1 > 5 逻辑运算: a = 1>6 or 1==1   a = 1 and b = ...

  9. demjson处理json数据

    因为json数据不规范出现了以下问题: json.decoder.JSONDecodeError: Expecting property name enclosed in double quo 网上查 ...

  10. 18.scrapy_maitian

    ershoufang.py # -*- coding: utf-8 -*- import scrapy class ErshoufangSpider(scrapy.Spider): name = 'e ...