传送门:QAQQAQ

题意:给一个01矩阵A,他的相反矩阵为B,每一次变换都会将原矩阵面积乘4成为:

AB

BA

矩阵的左上角固定,变换无限次,现有q个询问,即求一个矩阵内的1的个数。

思路:因为反转,所以A,B矩阵拼起来刚好是一个全都为1的矩阵,所以答案就是匹配的A,B矩阵总点数/2和右下角1的个数之和

注意点:

1.因为数据较大,要用前缀和思想

2.要开longlong

3.注意询问时各个变量的重置

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
 
int A[][],B[][],a[][],b[][];
int sa[][],sb[][];
ll n,m,q,t[];
void init()
{
t[]=;
for(int i=;i<=;i++) t[i]=t[i-]*;
memset(sa,,sizeof(sa));
memset(sb,,sizeof(sb));
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
sa[i][j]=sa[i-][j]+sa[i][j-]-sa[i-][j-]+A[i][j];
sb[i][j]=sb[i-][j]+sb[i][j-]-sb[i-][j-]+B[i][j];
}
}
}
 
 
int s=;
void judge(ll x)//even->A odd->B
{
for(int i=;i>=;i--)
{
if(t[i]<x) x-=t[i],s++;
}
}
 
ll solve(ll x,ll y)
{
s=;
ll ret=;
if(x==||y==) return ;
ret+=(x*y-(x%(*n))*(y%(*m)))/;//n,m写错
ll xx=x-x%(*n)+;
ll yy=y-y%(*m)+;
ll tx=(xx-)/n+;
ll ty=(yy-)/m+;
judge(tx); judge(ty);
ll dx=x-xx+,dy=y-yy+;
if(s%==)
{
if(dx<=n&&dy<=m) ret+=sb[dx][dy];
if(dx<=n&&dy>m) ret+=sa[dx][dy-m]+sb[dx][m];
if(dx>n&&dy<=m) ret+=sb[n][dy]+sa[dx-n][dy];
if(dx>n&&dy>m) ret+=sb[n][m]+sa[n][dy-m]+sa[dx-n][m]+sb[dx-n][dy-m];
}
else
{
if(dx<=n&&dy<=m) ret+=sa[dx][dy];
if(dx<=n&&dy>m) ret+=sb[dx][dy-m]+sa[dx][m];
if(dx>n&&dy<=m) ret+=sa[n][dy]+sb[dx-n][dy];
if(dx>n&&dy>m) ret+=sa[n][m]+sb[n][dy-m]+sb[dx-n][m]+sa[dx-n][dy-m];
}
return ret;
}
 
int main()
{
scanf("%lld%lld%lld",&n,&m,&q);
for(int i=;i<=n;i++)
{
char str[];
scanf("%s",str+);
for(int j=;j<=m;j++)
{
A[i][j]=str[j]-'';
B[i][j]=(str[j]-'')^;
}
}
init();
while(q--)
{
ll x1,y1,x2,y2;//开ll
scanf("%lld%lld%lld%lld",&x1,&y1,&x2,&y2);//s不在这里重置
ll ans=solve(x2,y2)-solve(x1-,y2)-solve(x2,y1-)+solve(x1-,y1-);
printf("%lld\n",ans);
}
}

codeforces 1186E- Vus the Cossack and a Field的更多相关文章

  1. E. Vus the Cossack and a Field (求一有规律矩形区域值) (有一结论待证)

    E. Vus the Cossack and a Field (求一有规律矩形区域值) 题意:给出一个原01矩阵,它按照以下规则拓展:向右和下拓展一个相同大小的 0 1 分别和原矩阵对应位置相反的矩阵 ...

  2. Codeforces F. Vus the Cossack and Numbers(贪心)

    题目描述: D. Vus the Cossack and Numbers Vus the Cossack has nn real numbers aiai. It is known that the ...

  3. 『Codeforces 1186E 』Vus the Cossack and a Field (性质+大力讨论)

    Description 给出一个$n\times m$的$01$矩阵$A$. 记矩阵$X$每一个元素取反以后的矩阵为$X'$,(每一个cell 都01倒置) 定义对$n \times m$的矩阵$A$ ...

  4. codeforces 1186C Vus the Cossack and Strings

    题目链接:https://codeforc.es/contest/1186/problem/C 题目大意:xxxxx(自认为讲不清.for instance) 例如:a="01100010& ...

  5. Codeforces 1186F - Vus the Cossack and a Graph 模拟乱搞/欧拉回路

    题意:给你一张无向图,要求对这张图进行删边操作,要求删边之后的图的总边数 >= ceil((n + m) / 2), 每个点的度数 >= ceil(deg[i] / 2).(deg[i]是 ...

  6. @codeforces - 1186F@ Vus the Cossack and a Graph

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 n 点 m 边的图(n, m<=10^6),记第 ...

  7. CodeForces - 1186 C. Vus the Cossack and Strings (异或)

    Vus the Cossack has two binary strings, that is, strings that consist only of "0" and &quo ...

  8. Vus the Cossack and Strings(Codeforces Round #571 (Div. 2))(大佬的位运算实在是太强了!)

    C. Vus the Cossack and Strings Vus the Cossack has two binary strings, that is, strings that consist ...

  9. Codeforces Round #571 (Div. 2)-D. Vus the Cossack and Numbers

    Vus the Cossack has nn real numbers aiai. It is known that the sum of all numbers is equal to 00. He ...

随机推荐

  1. USACO 2011 February Silver Cow Line /// 康拓展开模板题 oj22713

    题目大意: 输入n k,1-n的排列,k次操作 操作P:输入一个m 输出第m个排列 操作Q:输入一个排列 输出它是第几个排列 Sample Input 5 2P3Q1 2 5 3 4 Sample O ...

  2. ES6 学习 -- Generator函数

    (1)语法说明:Generator函数其实是一个普通函数,其有两个特点,一是,function关键字与函数名之间有一个星号(*):二是Generator函数内部使用yield表达式,定义不同的状态,然 ...

  3. github代码推送

    git init // 初始化版本库 git add . // 添加文件到版本库(只是添加到缓存区),.代表添加文件夹下所有文件 git commit -m "first commit&qu ...

  4. 8.spark Core 进阶1

        (e.g. standalone manager, Mesos, YARN)   In "cluster" mode, the framework launches the ...

  5. php多维数组排序方案。按照姓名 首字符 等排序

    //定义一个学生数组   $students = array(     256=>array('name'=>'jon','grade'=>98.5),     2=>arra ...

  6. ERROR 1872

    解决 > start slave; ERROR (HY000): Slave failed to initialize relay log info structure from the rep ...

  7. [JZOJ6279] 2019.8.5【NOIP提高组A】优美序列

    题目 题目大意 给你一个排列以及若干区间,对于每个区间,问包含它的最小的优美序列的区间. 所谓优美序列,即将权值排序后能够得到连续的排列. 思考历程 优美序列显然满足这个条件:\(mx-mn=r-l\ ...

  8. [JZOJ3234] 阴阳

    题目 题目大意 有一棵树,每条边有\(0\)或\(1\)两种颜色. 求满足存在\((u,v)\)路径上的点\(x\)使得\((u,x)\)和\((x,v)\)路径上的两种颜色出现次数相同的点对\((u ...

  9. 校园商铺-2项目设计和框架搭建-5配置maven

    /src/main/java 存放业务的Java代码 /src/main/resources 存储项目所用到的资源文件,如各种Spring,batis,日志的配置文件 /src/test/java 单 ...

  10. 网络攻击之代理IP

    1.通过代理IP的好处: (1)隐藏自己真实上网地址 (2)突破宽带商访问限制