import os
import sys
import numpy as np
import tensorflow as tf
import matplotlib
import matplotlib.pyplot as plt
import keras import utils
import model as modellib
import visualize
from model import log %matplotlib inline # Root directory of the project
ROOT_DIR = os.getcwd() # Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs") # Local path to trained weights file
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):
utils.download_trained_weights(COCO_MODEL_PATH) # Path to Shapes trained weights
SHAPES_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_shapes.h5")
# Run one of the code blocks

# Shapes toy dataset
# import shapes
# config = shapes.ShapesConfig() # MS COCO Dataset
import coco
config = coco.CocoConfig()
# Device to load the neural network on.
# Useful if you're training a model on the same
# machine, in which case use CPU and leave the
# GPU for training.
DEVICE = "/cpu:0" # /cpu:0 or /gpu:0
def get_ax(rows=1, cols=1, size=16):
"""Return a Matplotlib Axes array to be used in
all visualizations in the notebook. Provide a
central point to control graph sizes. Adjust the size attribute to control how big to render images
"""
_, ax = plt.subplots(rows, cols, figsize=(size*cols, size*rows))
return ax
# Create model in inference mode
with tf.device(DEVICE):
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR,
config=config) # Set weights file path
if config.NAME == "shapes":
weights_path = SHAPES_MODEL_PATH
elif config.NAME == "coco":
weights_path = COCO_MODEL_PATH
# Or, uncomment to load the last model you trained
# weights_path = model.find_last()[1] # Load weights
print("Loading weights ", weights_path)
model.load_weights(weights_path, by_name=True)
# Show stats of all trainable weights
visualize.display_weight_stats(model)

# Pick layer types to display
LAYER_TYPES = ['Conv2D', 'Dense', 'Conv2DTranspose']
# Get layers
layers = model.get_trainable_layers()
layers = list(filter(lambda l: l.__class__.__name__ in LAYER_TYPES,
layers))
# Display Histograms
fig, ax = plt.subplots(len(layers), 2, figsize=(10, 3*len(layers)),
gridspec_kw={"hspace":1})
for l, layer in enumerate(layers):
weights = layer.get_weights()
for w, weight in enumerate(weights):
tensor = layer.weights[w]
ax[l, w].set_title(tensor.name)
_ = ax[l, w].hist(weight[w].flatten(), 50)

吴裕雄 PYTHON 人工智能——基于MASK_RCNN目标检测(5)的更多相关文章

  1. 吴裕雄 PYTHON 人工智能——基于MASK_RCNN目标检测(4)

    import os import sys import random import math import re import time import numpy as np import tenso ...

  2. 吴裕雄 python 人工智能——基于Mask_RCNN目标检测(3)

    import os import sys import random import math import re import time import numpy as np import cv2 i ...

  3. 吴裕雄 python 人工智能——基于Mask_RCNN目标检测(2)

    import os import sys import itertools import math import logging import json import re import random ...

  4. 吴裕雄 python 人工智能——基于Mask_RCNN目标检测(1)

    import os import sys import random import math import numpy as np import skimage.io import matplotli ...

  5. 吴裕雄 python 人工智能——基于神经网络算法在智能医疗诊断中的应用探索代码简要展示

    #K-NN分类 import os import sys import time import operator import cx_Oracle import numpy as np import ...

  6. 吴裕雄 PYTHON 人工智能——智能医疗系统后台智能分诊模块及系统健康养生公告简约版代码展示

    #coding:utf-8 import sys import cx_Oracle import numpy as np import pandas as pd import tensorflow a ...

  7. 吴裕雄 python 人工智能——智能医疗系统后台用户复诊模块简约版代码展示

    #复诊 import sys import os import time import operator import cx_Oracle import numpy as np import pand ...

  8. 吴裕雄 python 人工智能——智能医疗系统后台用户注册、登录和初诊简约版代码展示

    #用户注册.登录模块 #数据库脚本 CREATE TABLE usertable( userid number(8) primary key not null , username varchar(5 ...

  9. TF项目实战(基于SSD目标检测)——人脸检测1

    SSD实战——人脸检测 Tensorflow 一 .人脸检测的困难: 1. 姿态问题 2.不同种族人, 3.光照 遮挡 带眼睛 4.视角不同 5. 不同尺度 二. 数据集介绍以及转化VOC: 1. F ...

随机推荐

  1. C语言-指针深度分析

    1.变量回顾 程序中的变量只是—段存储空间的别名,那么是不 是必须通过这个别名才能使用这段存储空间? 2.思考 下面的程序输出什么?为什么? ;    int* p = &i;       p ...

  2. 利用python装饰器为字符串添加,HTML标签

    # 为字符串添加HTML标签 import time def zhuang(fun): def zhaung_1(*args, **kargs): # time.sleep(1) html_str = ...

  3. nginx的错误处理

    以下是针对nginx发生错误的处理方案(将会持续更新) 遇到 nginx: [error] invalid PID number "" in "/var/run/ngin ...

  4. CSS遮罩层简易写法

      现在很多站点弹出框,都需要一个遮罩层.写法很多,以下是我比较喜欢的一种: .box{ position:absolute; top:0; bottom:0; left:0; right:0; ba ...

  5. jvm(4):类文件结构

    typora-root-url: ./ 类文件结构 魔数Magic Number 每个Class文件的头4个字节是魔数.值为0xCAFEBABE 唯一作用:确定这个文件是一个能被虚拟机接受的Class ...

  6. axios中then不用第二个参数,最好用catch

    一般来说,不要在then方法里面定义 Reject 状态的回调函数(即then的第二个参数),总是使用catch方法. // bad promise .then(function(data) { // ...

  7. Js选择器总结

    一.原生JS选择器 JS选择器常用的有getElementById().getElementsByName().getElementsByTagName().getElementsByClassNam ...

  8. 每天进步一点点------Allegro PCB

    Allegro PCB 1.如何在allegro中取消花焊盘(十字焊盘) set up->design parameter ->shape->edit global dynamic ...

  9. 关于static 关键字的总结

    转发自:https://www.cnblogs.com/xrq730/p/4820992.html 前言 之前讲到final关键字的作用是每次面试的时候我必问求职者的两个问题之一,另外一个问题就是文本 ...

  10. 2018-2019-20175334实验三《敏捷开发与XP实践》实验报告

    2018-2019-20175334实验三<敏捷开发与XP实践>实验报告 一.实验内容及步骤 实验三 敏捷开发与XP实践-1 实验三 敏捷开发与XP实践 http://www.cnblog ...