Keras深度学习框架之损失函数
一.损失函数的使用
损失函数【也称目标函数或优化评分函数】是编译模型时所需的两个参数之一。
model.compile(loss='mean_squared_error', optimizer='sgd')
或
from keras import losses
model.compile(loss=losses.mean_squared_error, optimizer='sgd')
可以传递一个现有的损失函数名或者一个TensorFlow/Theano符号函数。该符号函数为每个数据点返回一个标量,有一下两个参数:
1.y_true
真实标签,TensorFlow/Theano张量。
2.y_pred
预测值,TensorFlow/Theano张量,其shape与y_true相同。
实际的优化目标是所有数据点的输出数组的平均值。
二.可用的损失函数
1.mean_squared_error(y_true, y_pred)【MSE,均方误差】
计算公式:
源码:
2.mean_absolute_error(y_true, y_pred)【MAE,平均绝对误差】
提到MAE就不能不说显著性目标检测,所谓显著性目标,举个例子来说,当我们观察一张图片时,我们会首先关注那些颜色鲜明,夺人眼球的内容。就像我们看变形金刚时会首先看擎天柱一样,这是绝对的C位。所以我们把变形金刚中的擎天柱定义为显著性目标。
在显著性目标检测中的评价指标计算中,常用的检测算法就有平均绝对误差,其计算公式如下:
源码:
3.mean_absolute_percentage_error【MAPE,平均绝对百分比误差】
与平均绝对误差类似,平均绝对百分比误差预测结果与真实值之间的偏差比例。计算公式如下:
源码:
备注:
1.clip
逐元素,将超出指定范围的数强制变为边界数。
2.epsilon
固定参数,默认值为1*e-7。
4.mean_squared_logarithmic_error【MSLE,均方对数误差】
在计算均方误差之前先对数据取对数,再计算。
计算公式:
源码:
5.squared_hinage【不常用】
计算公式:
源码:
6.hinage【不常用】
计算公式:
源码:
7.categorical_hinge【不常用】
源码:
8.logcosh【不常用】
预测误差的双曲余弦的对数。计算结果与均方误差大致相同,但不会受到偶尔疯狂的错误预测的强烈影响。
源码:
9.categorical_crossentropy【不常用】
当使用categorical_crossentropy损失时,目标值应该是分类格式【即假如是10类,那么每个样本的目标值应该是一个10维的向量,这个向量除了表示类别的那个索引为1,其它均为0】。为了将整数目标值转换为分类目标值,可以使用keras实用函数to_categorical。
from keras.utils.np_utils import to_categorical
categorical_labels = to_categorical(int_labels, num_classes=None)
源码:
10.sparse_categorical_crossentropy【不常用】
源码:
11.binary_crossentropy【不常用】
源码:
12.kullback_leibler_divergence【不常用】
源码:
13.poisson【不常用】
计算公式:
源码:
14.cosine_proximity【不常用】
计算公式:
源码:
Keras深度学习框架之损失函数的更多相关文章
- 解析基于keras深度学习框架下yolov3的算法
一.前言 由于前一段时间以及实现了基于keras深度学习框架下yolov3的算法,本来想趁着余热将自己的心得体会进行总结,但由于前几天有点事就没有完成计划,现在趁午休时间整理一下. 二.Keras框架 ...
- Keras深度学习框架安装及快速入门
1.下载安装Keras 如果你是安装的Anaconda组合套件,可以直接在Prompt上执行安装命令:pip install keras 注意:最下面为Successfully...表示安装成功! 2 ...
- win7上安装theano keras深度学习框架
近期在学习深度学习,需要在本机上安装keras框架,好上手.上网查了一些资料,弄了几天今天终于完全搞好了.本次是使用GPU进行加速,使用cpu处理的请查看之前的随笔keras在win7下环境搭建 本机 ...
- 一个可扩展的深度学习框架的Python实现(仿keras接口)
一个可扩展的深度学习框架的Python实现(仿keras接口) 动机 keras是一种非常优秀的深度学习框架,其具有较好的易用性,可扩展性.keras的接口设计非常优雅,使用起来非常方便.在这里,我将 ...
- 转:TensorFlow和Caffe、MXNet、Keras等其他深度学习框架的对比
http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自Tens ...
- 深度学习框架Keras与Pytorch对比
对于许多科学家.工程师和开发人员来说,TensorFlow是他们的第一个深度学习框架.TensorFlow 1.0于2017年2月发布,可以说,它对用户不太友好. 在过去的几年里,两个主要的深度学习库 ...
- 深度学习框架比较TensorFlow、Theano、Caffe、SciKit-learn、Keras
TheanoTheano在深度学习框架中是祖师级的存在.Theano基于Python语言开发的,是一个擅长处理多维数组的库,这一点和numpy很像.当与其他深度学习库结合起来,它十分适合数据探索.它为 ...
- 基于Theano的深度学习框架keras及配合SVM训练模型
https://blog.csdn.net/a819825294/article/details/51334397 1.介绍 Keras是基于Theano的一个深度学习框架,它的设计参考了Torch, ...
- 如何评价深度学习框架Keras?
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&ut ...
随机推荐
- scratch3.0二次开发scratch3.0基本介绍(第一章)
为什么要自己开发而不使用官方版本? 这个问题要看我们的做少儿编程教育的需求是怎么样的. scratch本身提供了离线版本以及官网在线平台供我们使用,这足以满足我们对于编程教学模块的需求.但是对于一些教 ...
- 9.Super详解
super注意点: surper()是调用父类的构造方法,而且必须在构造方法的第一个 super必须只能出现在子类的方法或者构造方法中! super()和this()不能同时调用构造方法! Vs th ...
- [bzoj4872] [洛谷P3750] [六省联考2017] 分手是祝愿
Description Zeit und Raum trennen dich und mich. 时空将你我分开. \(B\) 君在玩一个游戏,这个游戏由 \(n\) 个灯和 \(n\) 个开关组成, ...
- 最强PostMan使用教程
最近需要测试产品中的REST API,无意中发现了PostMan这个chrome插件,把玩了一下,发现postman秉承了一贯以来google工具强大,易用的特质.独乐乐不如众乐乐,特此共享出来给大伙 ...
- python类型-序列
注:本文档主要是学习<Python核心编程(第二版)>时做的资料整理. 1.序列 序列的成员是有序排列的,并且可以通过下标偏移量访问到它的一个或者几个成员,包括字符串(普通字符串和Unic ...
- Python赋值没有返回值+笔试
>>> def test(): i = 1 return i=2 SyntaxError: invalid syntax 原因是python 中赋值语句没有返回值,这里不是C++
- doT 这个模板 是怎么实现的?(1)
- JS-03-数据基本类型与转换
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- RTMP、HTTP、HLS协议比较
RTMP HLS HTTP 直播协议一次看个够 直播从2016年一路火到了2017年,如今要在自己的App里加入直播功能,只要找一个现成的SDK就行了,什么拍摄.美颜.推流,一条龙服务.不过作为直播身 ...
- CUDA 计算pi (π)
通过简单的程序设计熟练CUDA的使用步骤 下面是cuda代码及相关注释 #include <stdio.h> #include <iostream> #include < ...