Super Jumping! Jumping! Jumping!

Problem Description
Nowadays, a kind of chess game called “Super Jumping! Jumping! Jumping!” is very popular in HDU. Maybe you are a good boy, and know little about this game, so I introduce it to you now.

The game can be played by two or more than two players. It consists of a chessboard(棋盘)and some chessmen(棋子), and all chessmen are marked by a positive integer or “start” or “end”. The player starts from start-point and must jumps into end-point finally. In the course of jumping, the player will visit the chessmen in the path, but everyone must jumps from one chessman to another absolutely bigger (you can assume start-point is a minimum and end-point is a maximum.). And all players cannot go backwards. One jumping can go from a chessman to next, also can go across many chessmen, and even you can straightly get to end-point from start-point. Of course you get zero point in this situation. A player is a winner if and only if he can get a bigger score according to his jumping solution. Note that your score comes from the sum of value on the chessmen in you jumping path.
Your task is to output the maximum value according to the given chessmen list.

 
Input
Input contains multiple test cases. Each test case is described in a line as follow:
N value_1 value_2 …value_N 
It is guarantied that N is not more than 1000 and all value_i are in the range of 32-int.
A test case starting with 0 terminates the input and this test case is not to be processed.
 
Output
For each case, print the maximum according to rules, and one line one case.
 
Sample Input
3 1 3 2
4 1 2 3 4
4 3 3 2 1
0
 
Sample Output
4
10
3
 
题目大意:给定一个序列包含n个数,求出最大子序列和
思路:对每一个数,我们可以和它之前的所有数比较,若当前数大于前面的数的时候有状态转移方程:dp[i] = max(dp[i],dp[j]+a[i]);//其中j为前面那个数,i为当前的数,a[i]为第i个位置上的数,最后取所有dp[]中的最大值即可
 #include<iostream>
#include<algorithm>
#include<cstring> using namespace std;
typedef long long LL;
const int maxn = ;
LL n, a[maxn], dp[maxn];
int main()
{
ios::sync_with_stdio(false);
while (cin >> n && n) {
memset(a, , sizeof(a));
memset(dp, , sizeof(dp));
for (int i = ; i <= n; i++)cin >> a[i], dp[i] = a[i];
for (int i = ; i <= n; i++)
for (int j = ; j < i; j++)
if (a[i] > a[j])
dp[i] = max(dp[i], dp[j] + a[i]);
LL ans = ;
for (int i = ; i <= n; i++)ans = max(ans, dp[i]);
cout << ans << endl;
}
return ;
}

HDU 1087 Super Jumping....(动态规划之最大递增子序列和)的更多相关文章

  1. HDU 1087 Super Jumping! Jumping! Jumping

    HDU 1087 题目大意:给定一个序列,只能走比当前位置大的位置,不可回头,求能得到的和的最大值.(其实就是求最大上升(可不连续)子序列和) 解题思路:可以定义状态dp[i]表示以a[i]为结尾的上 ...

  2. hdu 1087 Super Jumping! Jumping! Jumping!(动态规划DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1087 Super Jumping! Jumping! Jumping! Time Limit: 200 ...

  3. HDU 1087 Super Jumping! Jumping! Jumping!(求LSI序列元素的和,改一下LIS转移方程)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1087 Super Jumping! Jumping! Jumping! Time Limit: 20 ...

  4. HDU 1087 Super Jumping! Jumping! Jumping! 最大递增子序列

    Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  5. HDU 1087 Super Jumping! Jumping! Jumping! 最长递增子序列(求可能的递增序列的和的最大值) *

    Super Jumping! Jumping! Jumping! Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64 ...

  6. hdu 1087 Super Jumping! Jumping! Jumping!(动态规划DP)

    Super Jumping! Jumping! Jumping!Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  7. HDU 1087 Super Jumping! Jumping! Jumping!(动态规划)

    Super Jumping! Jumping! Jumping! Problem Description Nowadays, a kind of chess game called “Super Ju ...

  8. HDU 1087 Super Jumping! Jumping! Jumping! (动态规划、最大上升子序列和)

    Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  9. hdu 1087 Super Jumping! Jumping! Jumping!(动态规划)

    题意: 求解最大递增子序列. 例如:3 1 3 2 输入 3  个数 1 3 2 则递增子序列有 {1} {3} {2} {1 3} {1 2} ,故输出子序列的最大和 4 解题思路: x[n](n个 ...

随机推荐

  1. DOM查找元素的方法总结

    按HTML查找:优点:范围可大可小,可设置条件:包括五种方式:1.按id查找:2.按标签名查找:var elems = parent.getElementsByTagName('');3.按name属 ...

  2. HZOI20190714 T3建造游乐场

    先放作者的正解: 先说g吧,有i个点的话,在其中i-1个点中有$C_{i-1}^{2}$种边,每个边有选和不选两种情况.如果度不是偶数呢?用剩下那个点给他连上呗.如果剩下那个点度数不是偶数呢?这是不可 ...

  3. dialog的进度条

    import android.app.Activity; import android.app.ProgressDialog; import android.os.Bundle; import and ...

  4. Silverlight 2.5D RPG游戏技巧与特效处理:(五)HLSL渲染动画

    原文:Silverlight 2.5D RPG游戏技巧与特效处理:(五)HLSL渲染动画 或许大家依旧对上一节中的“黑夜”及“梦回过去”记忆犹新,追问下去HLSL到底是何方神圣能实现如此炫酷之效果?层 ...

  5. 使用vscode书写markdown文件

    插件推荐 markdown-preview-enhanced 打开 vscode 编辑器,在插件页搜索 markdown-preview-enhanced,接着点击 Install 按钮. 该插件的中 ...

  6. Ubuntu 16.04下OLSR协议安装教程

    OLSR是根据MANET的要求,在传统的LS(Link state)协议的基础上优化的. OLSR中的关键概念是多点转播(MPRs),MPRs是在广播洪泛的过程中挑选的转发广播的节点.传统的链路状态协 ...

  7. ActivityManagerService

    先上类图: 基本类说明和运行框架图中蓝色表示AMS进程,黄色表示app进程.1. 全局调度者在android中,AMS是activity和进程的全局调度者,也就是说系统中载入和准备载入的activit ...

  8. bzoj1412 狼和羊的故事

    Description “狼爱上羊啊爱的疯狂,谁让他们真爱了一场:狼爱上羊啊并不荒唐,他们说有爱就有方向......” Orez听到这首歌,心想:狼和羊如此和谐,为什么不尝试羊狼合养呢?说干就干! O ...

  9. uva 10453 【回文串区间dp】

    Uva 10453 题意:给定字符串,问最少插入多少个字符使其变成回文串,并任意输出一种结果. 题解:和Uva 10739类似,这里是只能增加.类似定义dp[i][j]表示子串Si...Sj变为回文串 ...

  10. Android BroadcastReceiver 简介

    Android BroadcastReceiver 简介  在 Android 中使用 Activity, Service, Broadcast, BroadcastReceiver     活动(A ...