Codeforces 166B - Polygon (判断凸包位置关系)
Codeforces Round #113 (Div. 2)
题目链接:Polygons
You've got another geometrical task. You are given two non-degenerate polygons \(A\) and \(B\) as vertex coordinates. Polygon \(A\) is strictly convex. Polygon \(B\) is an arbitrary polygon without any self-intersections and self-touches. The vertices of both polygons are given in the clockwise order. For each polygon no three consecutively following vertices are located on the same straight line.
Your task is to check whether polygon \(B\) is positioned strictly inside polygon \(A\). It means that any point of polygon \(B\) should be strictly inside polygon \(A\). "Strictly" means that the vertex of polygon \(B\) cannot lie on the side of the polygon \(A\).
Input
The first line contains the only integer \(n (3 \le n \le 10^5)\) — the number of vertices of polygon \(A\). Then \(n\) lines contain pairs of integers \(x_i, y_i (|x_i|, |y_i| \le 10^9)\) — coordinates of the i-th vertex of polygon \(A\). The vertices are given in the clockwise order.
The next line contains a single integer \(m (3 \le m \le 2·10^4)\) — the number of vertices of polygon \(B\). Then following \(m\) lines contain pairs of integers \(x_j, y_j (|x_j|, |y_j| \le 10^9)\) — the coordinates of the \(j\)-th vertex of polygon \(B\). The vertices are given in the clockwise order.
The coordinates of the polygon's vertices are separated by a single space. It is guaranteed that polygons \(A\) and \(B\) are non-degenerate, that polygon \(A\) is strictly convex, that polygon \(B\) has no self-intersections and self-touches and also for each polygon no three consecutively following vertices are located on the same straight line.
Output
Print on the only line the answer to the problem — if polygon \(B\) is strictly inside polygon \(A\), print "YES", otherwise print "NO" (without the quotes).
Examples
input
6
-2 1
0 3
3 3
4 1
3 -2
2 -2
4
0 1
2 2
3 1
1 0
output
YES
input
5
1 2
4 2
3 -3
-2 -2
-2 1
4
0 1
1 2
4 1
2 -1
output
NO
input
5
-1 2
2 3
4 1
3 -2
0 -3
5
1 0
1 1
3 1
5 -1
2 -1
output
NO
Solution
题意
给定两个凸包 \(A\) 和 \(B\)。判断凸包 \(B\) 是否严格在凸包 \(A\) 内。
题解
对凸包 \(A\) 和 \(B\) 的所有点构造凸包,判断该凸包是否等于凸包 \(A\)。若相等,则凸包 \(B\) 严格在凸包 \(A\) 内。
Code
#include <bits/stdc++.h>
using namespace std;
const double eps = 1e-8;
const double pi = acos(-1.0);
int dcmp(double x) {
if (fabs(x) <= eps)
return 0;
return x > 0 ? 1 : -1;
}
class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
Point operator+(Point a) {
return Point(a.x + x, a.y + y);
}
Point operator-(Point a) {
return Point(x - a.x, y - a.y);
}
bool operator<(const Point &a) const {
if (x == a.x)
return y < a.y;
return x < a.x;
}
bool operator==(const Point &a) const {
if (fabs(x - a.x) < eps && fabs(y - a.y) < eps)
return 1;
return 0;
}
bool operator!=(const Point &a) const {
if ((*this) == a)
return 0;
return 1;
}
double length() {
return sqrt(x * x + y * y);
}
};
typedef Point Vector;
double cross(Vector a, Vector b) {
return a.x * b.y - a.y * b.x;
}
double dot(Vector a, Vector b) {
return a.x * b.x + a.y * b.y;
}
bool isclock(Point p0, Point p1, Point p2) {
Vector a = p1 - p0;
Vector b = p2 - p0;
if (dcmp(cross(a, b)) <= 0) // 为了让凸包边上可以有点
return true;
return false;
}
double getDistance(Point a, Point b) {
return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
}
typedef vector<Point> Polygon;
Polygon Andrew(Polygon s) {
Polygon u, l;
if(s.size() < 3) return s;
sort(s.begin(), s.end());
u.push_back(s[0]);
u.push_back(s[1]);
l.push_back(s[s.size() - 1]);
l.push_back(s[s.size() - 2]);
for(int i = 2 ; i < s.size() ; ++i) {
for(int n = u.size() ; n >= 2 && !isclock(u[n - 2], u[n - 1], s[i]); --n) {
u.pop_back();
}
u.push_back(s[i]);
}
for(int i = s.size() - 3 ; i >= 0 ; --i) {
for(int n = l.size() ; n >=2 && !isclock(l[n-2],l[n-1],s[i]); --n) {
l.pop_back();
}
l.push_back(s[i]);
}
for(int i = 1 ; i < u.size() - 1 ; i++) l.push_back(u[i]);
return l;
}
// 判断点在线段上
bool OnSegment(Point p, Point a1, Point a2) {
return dcmp(cross(a1 - p, a2 - p)) == 0 && dcmp(dot(a1 - p, a2 - p)) < 0;
}
// 判断点在凸包内
int isPointInPolygon(Point p, vector<Point> s) {
int wn = 0, cc = s.size();
for (int i = 0; i < cc; i++) {
Point p1 = s[i];
Point p2 = s[(i + 1) % cc];
if (p1 == p || p2 == p || OnSegment(p, p1, p2)) return -1;
int k = dcmp(cross(p2 - p1, p - p1));
int d1 = dcmp(p1.y - p.y);
int d2 = dcmp(p2.y - p.y);
if (k > 0 && d1 <= 0 && d2 > 0) wn++;
if (k < 0 && d2 <= 0 && d1 > 0) wn--;
}
if (wn != 0) return 1;
return 0;
}
int main() {
Polygon A, B;
int n;
scanf("%d", &n);
for (int i = 0; i < n; ++i) {
double x, y;
scanf("%lf%lf", &x, &y);
A.push_back(Point(x, y));
B.push_back(Point(x, y));
}
scanf("%d", &n);
for (int i = 0; i < n; ++i) {
double x, y;
scanf("%lf%lf", &x, &y);
B.push_back(Point(x, y));
}
A = Andrew(A);
B = Andrew(B);
if(A.size() != B.size()) {
printf("NO\n");
return 0;
}
int flag = 1;
sort(A.begin(), A.end());
sort(B.begin(), B.end());
for(int i = 0; i < A.size(); ++i) {
if(A[i] != B[i]) {
flag = 0;
break;
}
}
if(flag) {
printf("YES\n");
} else {
printf("NO\n");
}
return 0;
}
Codeforces 166B - Polygon (判断凸包位置关系)的更多相关文章
- JS魔法堂:判断节点位置关系
一.前言 在polyfill querySelectorAll 和写弹出窗时都需要判断两个节点间的位置关系,通过jQuery我们可以轻松搞定,但原生JS呢?下面我将整理各种判断方法,以供日后查阅. 二 ...
- POJ 1269 Intersecting Lines (判断直线位置关系)
题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a li ...
- Cupid's Arrow---hdu1756(判断点与多边形的位置关系 模板)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1756 题意:中文题,套模板即可: /* 射线法:判断一个点是在多边形内部,边上还是在外部,时间复杂度为 ...
- LightOj1190 - Sleepwalking(判断点与多边形的位置关系--射线法模板)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1190 题意:给你一个多边形含有n个点:然后又m个查询,每次判断点(x, y)是否在多边 ...
- 判断两条直线的位置关系 POJ 1269 Intersecting Lines
两条直线可能有三种关系:1.共线 2.平行(不包括共线) 3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...
- Intersecting Lines (计算几何基础+判断两直线的位置关系)
题目链接:http://poj.org/problem?id=1269 题面: Description We all know that a pair of distinct points on a ...
- poj 1269 判断直线的位置关系
题目链接 题意 判断两条直线的位置关系,重合/平行/相交(求交点). 直线以其上两点的形式给出(点坐标为整点). 思路 写出直线的一般式方程(用\(gcd\)化为最简), 计算\(\begin{vma ...
- luogu 1355 神秘大三角 判断点和三角形的位置关系 面积法 叉积法
题目链接 题目描述 判断一个点与已知三角形的位置关系. 输入输出格式 输入格式: 前三行:每行一个坐标,表示该三角形的三个顶点 第四行:一个点的坐标,试判断该点与前三个点围成三角形的位置关系 (详见样 ...
- 叉积_判断点与三角形的位置关系 P1355 神秘大三角
题目描述 判断一个点与已知三角形的位置关系. 输入输出格式 输入格式: 前三行:每行一个坐标,表示该三角形的三个顶点 第四行:一个点的坐标,试判断该点与前三个点围成三角形的位置关系 (详见样例) 所有 ...
随机推荐
- 「题解」:$Smooth$
问题 A: Smooth 时间限制: 1 Sec 内存限制: 512 MB 题面 题面谢绝公开. 题解 维护一个队列,开15个指针,对应前15个素数. 对于每一次添加数字,暴扫15个指针,将指针对应 ...
- 贪心——cf708b
先求0,1的个数,然后贪心输出01即可 #include<bits/stdc++.h> using namespace std; #define ll long long ll a,b,c ...
- JS对象的讲解
1.对象属性的可枚举性和所有权:https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Enumerability_and_ownership_ ...
- Mysql DBA
1 mysqldump: Error 2020: Got packet bigger than 'max_allowed_packet' bytes when dumping table `tb_co ...
- 【Java多线程系列四】控制线程执行顺序
假设有线程1/线程2/线程3,线程3必须在线程1/线程2执行完成之后开始执行,有两种方式可实现 Thread类的join方法:使宿主线程阻塞指定时间或者直到寄生线程执行完毕 CountDownLatc ...
- jQuery 1.0 | 选择器 | 事件 | 操作样式 | 操作属性
使用jQuery: 1,下载jQuery http://jquery.com/download/ 2,引入jQuery文件 3,定义入口函数 <script src="jquery-1 ...
- CSS3:FlexBox的详解
Flexbox是Flexible box 的简称(灵活的盒子容器),是CSS3引入的新的布局模式.它决定了元素如何在页面上排列,使它们能在不同的屏幕尺寸和设备下可预测地展现出来. 它之所以被称为 Fl ...
- 两种接口传送数据协议(xml和json)
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/tianyazaiheruan/article/details/37659983 规范性接口开发 ...
- 使用Swagger2Markup归档swagger生成的API文档
文章出处: http://blog.didispace.com/swagger2markup-asciidoc/ 说明 项目中使用Swagger之后,我们能够很轻松的管理API文档,并非常简单的模拟接 ...
- spring的组成模块
spring的核心组件(骨骼架构)—— 共同创建了Bean关系网络 Core:主要定义了资源的访问方式 Context:给spring提供一个运行时的环境 Bean:Bean的定义,创建以及解析 ...