Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy
Their data
- five data set, 100 single channel of EEG signals, each channel EEG has 4097 data point.
- to reduce the computation time, they segment each channel with 1024 data sample points per segment.
4 segment with 1024 data samples.
Figure 2 showed the examples of time series data of five subsets.
Methodology
transformation of time series EEG signals to complex networks
- add nodes: each data smple point is seen as a node
- add edges with direction: visibility properties.
- add weight: 根据边与水平线的夹角.
$$ \omega_ab = arctan\frac{x_tb - x_ta}{tb - ta}, a < b $$
This paper showed two tables with nodes examples and edge examples, respectively.
Feature extraction
The feature extraction process compresses the large volume EEG data into relevant and important feature vector set at the cost of minimum loss of information.
- In this paper, we have extracted two statistical properties of network named as modularity and the average weighted degree of network as features from the weighted visibility graph as these features are able to focus on how the valuable information about the time series can be acquired by analysis the structural pattern of complex networks.
Classification
- use two classifier: SVM and KNN classifier by using Euclidean distance.
- 这是有监督的学习,而能源的数据是没有分类的.
Performance evaluation
true positive, true negative, false positive, false negative.
Experiments
4097 data points, 4 segments. they investigated that there is not much difference in the accuracy performance when considering segmented and non-segmented approach of EEG signal. Then there is not much difference in the accuracy performance when considering segmented and non-segmented approach of EEG signa
Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy的更多相关文章
- Paper: A novel visibility graph transformation of time series into weighted networks
1. Convert time series into weighted networks. 2. link prediction is used to evaluate the performanc ...
- Visibility Graph Analysis of Geophysical Time Series: Potentials and Possible Pitfalls
Tasks: invest papers 3 篇. 研究主动权在我手里. I have to. 1. the benefit of complex network: complex networ ...
- Paper: A novel method for forecasting time series based on fuzzy logic and visibility graph
Problem Forecasting time series. Other methods' drawback: even though existing methods (exponential ...
- Paper: A Novel Time Series Forecasting Method Based on Fuzzy Visibility Graph
Problem define a fuzzy visibility graph (undirected weighted graph), then give a new similarity meas ...
- 谣言检测()《Data Fusion Oriented Graph Convolution Network Model for Rumor Detection》
论文信息 论文标题:Data Fusion Oriented Graph Convolution Network Model for Rumor Detection论文作者:Erxue Min, Yu ...
- 谣言检测(PSIN)——《Divide-and-Conquer: Post-User Interaction Network for Fake News Detection on Social Media》
论文信息 论文标题:Divide-and-Conquer: Post-User Interaction Network for Fake News Detection on Social Media论 ...
- 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)
Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...
- [CVPR2017] Visual Translation Embedding Network for Visual Relation Detection 论文笔记
http://www.ee.columbia.edu/ln/dvmm/publications/17/zhang2017visual.pdf Visual Translation Embedding ...
- 轮廓检测论文解读 | Richer Convolutional Features for Edge Detection | CVPR | 2017
有什么问题可以加作者微信讨论,cyx645016617 上千人的粉丝群已经成立,氛围超好.为大家提供一个遇到问题有可能得到答案的平台. 0 概述 论文名称:"Richer Convoluti ...
随机推荐
- Vmvare扩展虚拟机磁盘大小
Vmvare设置好虚拟机的磁盘大小之后,发现磁盘空间不够了,这个时候怎么扩展磁盘的大小呢? 首先,在确保虚拟机关闭的情况下,右键设置,选择硬盘,扩展,这样就可以增加磁盘的大小. 但是由于未进行分区和磁 ...
- 剑指offer-面试题32-分行从上到下打印二叉树-二叉树遍历
/* 题目: 分行按层自上向下打印二叉树. */ /* 思路: 使用队列,将节点压入队列中,再弹出来,压入其左右子节点,循环,直到栈为空. 添加两个计数器,current记录当前行的节点数,next记 ...
- XGBoost学习笔记2
XGBoost API 参数 分类问题 使用逻辑回归 # Import xgboost import xgboost as xgb # Create arrays for the features a ...
- Java中List的父类与子类如何转换?
目录 定义 要点: 子类转父类 父类转子类 定义 A是B的子类,A比B多几条属性 要点: A是B的子类,但List<A>不是List<B>的子类.所以想直接转换是不行的. 子类 ...
- Linux内核镜像文件格式与生成过程(转)
<Linux内核镜像格式> Linux内核有多种格式的镜像,包括vmlinux.Image.zImage.bzImage.uImage.xipImage.bootpImage等. ➤k ...
- mysql之group by进行分组统计
格式: select 字段1,字段2 from 表名 where 条件 group by 字段 样例一: 1.需要每个市的对应数据 -- 计算 审批完成时间和提交审批时间天数(总时间差) 总数据量 行 ...
- C#实例之简单聊天室(状态管理)
前言 状态管理是在同一页或不同页的多个请求发生时,维护状态和页信息的过程.因为Web应用程序的通信协议使用了无状态的HTTP协议,所以当客户端请求页面时,ASP.NET服务器端都会重新生 ...
- FastDFS 单机部署指南
简介 FastDFS是一个开源的分布式文件系统,官方介绍有详细的介绍,不多赘述.本文主要是FastDFS的搭建及采坑指南. Step By Step Guide 系统 阿里云ECS Ubuntu 16 ...
- 安全 - CORS(脚本请求等)
功能概述 出于安全原因,浏览器限制从脚本内发起的跨域HTTP请求 或 拦截了跨域请求的结果. 例如,XMLHttpRequest和Fetch API遵循同源策略. 这意味着使用这些API的Web应用程 ...
- H3C IP地址配置
一.IP地址分类 分配地址就是给每个连接到IPv4网络上的设备分配的一个网络唯一的地址.IP地址长度为32比特,通常采用点分十进制方式表示,即每个IP地址被表示为以小数点隔开的4个十进制整数,每个整数 ...