acm数论之旅(转载)---最大公约数与最小公倍数
gcd(a, b),就是求a和b的最大公约数
lcm(a, b),就是求a和b的最小公倍数
然后有个公式
a*b = gcd * lcm ( gcd就是gcd(a, b), ( •̀∀•́ ) 简写你懂吗)
解释(不想看就跳过){
首先,求一个gcd,然后。。。
a / gcd 和 b / gcd 这两个数互质了,也就是 gcd( a / gcd ,b / gcd ) = 1,然后。。。
lcm = gcd * (a / gcd) * (b / gcd)
lcm = (a * b) / gcd
所以。。a*b = gcd * lcm
}
互质的意思是两个数只有唯一的公约数1;
所以要求lcm,先求gcd
辣么,问题来了,gcd怎么求
辗转相除法
while循环
1 LL gcd(LL a, LL b){
2 LL t;
3 while(b){
4 t = b;
5 b = a % b;
6 a = t;
7 }
8 return a;
9 }
还有一个递归写法
1 LL gcd(LL a, LL b){
2 if(b == 0) return a;
3 else return gcd(b, a%b);
4 }
5
6 LL gcd(LL a, LL b){
7 return b ? gcd(b, a%b) : a;
8 }
9 //两种都可以
辣么,lcm = a * b / gcd
(注意,这样写法有可能会错,因为a * b可能因为太大 超出int 或者 超出 longlong)
所以推荐写成 : lcm = a / gcd * b
然后几个公式自己证明一下
gcd(ka, kb) = k * gcd(a, b)
lcm(ka, kb) = k * lcm(a, b)
上次做题碰到这个公式
lcm(S/a, S/b) = S/gcd(a, b)
S = 9,a = 4,b = 6,小数不会lcm,只好保留分数形式去通分约分。
当我看到右边那个公式。。。。
(╯°Д°)╯┻━┻
这TM我怎么想的到,给我证明倒是会证。 T_T
acm数论之旅(转载)---最大公约数与最小公倍数的更多相关文章
- acm数论之旅--组合数(转载)
随笔 - 20 文章 - 0 评论 - 73 ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) ) 补充:全错排公式:https://blog.csdn.net/Carey_Lu/ ...
- acm数论之旅(转载) -- 逆元
ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄)) 数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...
- acm数论之旅--中国剩余定理
ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯) 中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...
- acm数论之旅--欧拉函数的证明
随笔 - 20 文章 - 0 评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...
- acm数论之旅--数论四大定理
ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我) (本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威 ...
- acm数论之旅(转载)--素数
https://www.cnblogs.com/linyujun/p/5198832.html 前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我 ...
- acm数论之旅(转载) -- 快速幂
0和1都不是素数,也不是合数. a的b次方怎么求 pow(a, b)是数学头文件math.h里面有的函数 可是它返回值是double类型,数据有精度误差 那就自己写for循环咯 LL pow(LL a ...
- ACM数论之旅10---大组合数-卢卡斯定理(在下卢卡斯,你是我的Master吗?(。-`ω´-) )
记得前几章的组合数吧 我们学了O(n^2)的做法,加上逆元,我们又会了O(n)的做法 现在来了新问题,如果n和m很大呢, 比如求C(n, m) % p , n<=1e18,m<=1e18 ...
- ACM数论之旅1---素数(万事开头难(>_<))
前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我都扔进数论分类里面好了) 于是我就准备写一个长篇集,把我知道的数论知识和ACM模板都发上来(而且 ...
随机推荐
- Myeclipse的一些快捷键整理(转)
1. [ALT+/] 此快捷键为用户编辑的好帮手,能为用户提供内容的辅助,不要为记不全方法和属性名称犯愁,当记不全类.方法和属性的名字时,多体验一下[ALT+/]快捷键带来的好处吧. 2. ...
- Java中的Collections类
转载:https://blog.csdn.net/yangxingpa/article/details/80515963 从[Java]Java中的Collections类——Java中升级版的数据结 ...
- vue中mixins的理解及应用
vue中mixins的理解及应用 vue中提供了一种混合机制--mixins,用来更高效的实现组件内容的复用.最开始我一度认为这个和组件好像没啥区别..后来发现错了.下面我们来看看mixins和普通情 ...
- 解决报错Error response from daemon: Get https://registry-1.docker.io/v2/: net/http: TLS handshaketimeout
报错: [root@localhost /]# sudo docker pull ubuntuError response from daemon: Get https://registry-1.do ...
- 从ICG cell 在 library 中的定义说起
如Coding 时需要考虑什么样的代码风格会使gating 的效率更高:综合时需要特别设置要插入的gating 类型,每个gating 的fanout 范围,是否可以跨层次,是否需要做physical ...
- 【转载】Java开发中的23种设计模式
转自:http://zz563143188.iteye.com/blog/1847029 一.设计模式的分类 总体来说设计模式分为三大类: 创建型模式,共五种:工厂方法模式.抽象工厂模式.单例模式.建 ...
- Gevent和猴子补丁
定义 在2018年看Flutent python时了解到猴子补丁,知道咋回事,但是现在通过代码更深刻认识猴子补丁. 猴子补丁:在运行时修改类或模块,而不改动源码. 例子1 没有用猴子补丁 import ...
- web前端-基础篇
该篇仅是本人学习前端时,做的备忘笔记: 一.背景图片设置: 设置背景图时的css代码:background-image:url(图片的url路径); ps:设置好这个背景后请一定要设置该背景图片的大小 ...
- C/C++内存四区
内存模型图 32位CPU可寻址4G线性空间,每个进程都有各自独立的4G逻辑地址,其中0~3G是用户态空间,3~4G是内核空间,不同进程相同的逻辑地址会映射到不同的物理地址中.其逻辑地址其划分如下: 各 ...
- promise封装ajax
promise的含义(本身不是异步,是封装异步操作的容器,统一异步的标准) promise对象的特点:对象的状态不受外界影响:一旦状态改变,就不会再变,任何时候都可以得到这个结果. function ...