Acesrc and Travel

时间限制: 1 Sec  内存限制: 128 MB

题目描述

Acesrc is a famous tourist at Nanjing University second to none. During this summer holiday, he, along with Zhang and Liu, is going to travel to Hong Kong. There are n spots in Hong Kong, and n−1 bidirectional sightseeing bus routes connecting these spots. They decide to visit some spots by bus.

However, Zhang and Liu have different preferences for these spots. They respectively set a satisfactory value for each spot. If they visit the ith spot, Zhang will obtain satisfactory value ai, and Liu will obtain bi. Starting with Zhang, they alternately decide the next spot to visit for the sake of fairness. There must be a bus route between the current spot and the next spot to visit. Moreover, they would never like to visit a spot twice. If anyone can't find such a next spot to visit, they have no choice but to end this travel.

Zhang and Liu are both super smart competitive programmers. Either want to maximize the difference between his total satisfactory value and the other's. Now Acesrc wonders, if they both choose optimally, what is the difference between total satisfactory values of Zhang and Liu?

输入

The first line of input consists of a single integer T (1≤T≤30), denoting the number of test cases.

For each test case, the first line contains a single integer n (1≤n≤105), denoting the number of spots. Each of the next two lines contains n integers, a1,a2,⋯,an and b1,b2,⋯,bn (0≤ai,bi≤109), denoting the 
satisfactory value of Zhang and Liu for every spot, respectively. Each of the last n−1 lines contains two integers x,y (1≤x,y≤n,x≠y), denoting a bus route between the xth spot and the yth spot. It is reachable from any spot to any other spot through these bus routes.

It is guaranteed that the sum of n does not exceed 5.01×105.

输出

For each test case, print a single integer in one line, the difference of total satisfactory values if they both choose optimally.

样例输入

1
3
1 1 1
0 2 3
1 2
1 3

样例输出

-1

题意:有两个人轮流在一棵树上选择点,每个点有一个权值,A想让权值和最大,B想让权值和最小,下一次选择的点必须和这次选择的点有直接边连接,且点不能重复选择,A可以选择任意一个点作为初始点,问最后权值和是多少。
思路:考虑DP,但这是一个无根树,于是首先要转化成有根树DP,即首先把1号点作为根节点,然后DP算出:A或者B选择了某一个点,且上一步是从改点的父亲走过来的最优权值和。然后再考虑父亲反向边的DP,即计算出:A或者B选择了某一个点,且下一步是到改点的父亲的最优权值和。则答案就是在所有B选择点时,维护最大值。
总结:无根树DP就是有根树DP加上父亲反向边的DP。

#pragma GCC optimize(3,"Ofast","inline")
#include <bits/stdc++.h>
using namespace std; const int N = 6e5+;
struct ss
{
int u,v,next;
};
ss edg[N*];
int head[N],sum_edge=; void addedge(int u,int v)
{
edg[sum_edge]=(ss){u,v,head[u]};
head[u]=sum_edge++;
} long long value[N];
long long ans=;
long long dp[N][]; void init(int n)
{
for(int i=;i<=n;i++)
{
head[i]=-;
dp[i][]=dp[i][]=;
}
sum_edge=;
ans=LLONG_MIN;
} long long dfs1(int x,int fa,int type)
{
if(dp[x][type])return dp[x][type];
long long now= (type== ? LLONG_MIN : LLONG_MAX); for(int i=head[x];i!=-;i=edg[i].next)
{
int v=edg[i].v;
if(v==fa)continue; if(type==)now=max(now,dfs1(v,x,)+value[x]);
else
now=min(now,dfs1(v,x,)+value[x]);
}
return dp[x][type]=((now==LLONG_MAX||now==LLONG_MIN) ? value[x] : now);
} long long dfs(int x,int fa,int type,long long last_ans)
{
// printf("%d %d %d %lld\n",x,fa,type,last_ans);
//printf("x=%d,fa=%d : %lld %lld value[%d]=%lld\n",x,fa,dfs1(x,fa,0),dfs1(x,fa,1),x,value[x]);
priority_queue<pair<long long,int> >q;
for(int i=head[x];i!=-;i=edg[i].next)
{
int v=edg[i].v;
if(v==fa)continue; if(type==)q.push(make_pair(-dfs1(v,x,),v));
else
q.push(make_pair(dfs1(v,x,),v)); if(q.size()>)q.pop();
} pair<long long,int> first;
pair<long long,int> second; if(q.size())
{
first=q.top();
q.pop();
// printf("%lld\n",first.first); if(q.size())
{
second=q.top();
// printf("%lld\n",second.first);
q.pop();
}
else
{
second=first; if(x!=)first=make_pair(LLONG_MAX/,-);
else
first=make_pair(,-);
}
}
else
{
if(x!=)second=make_pair(LLONG_MAX/,-);
else
second=make_pair(,-);
} if(type==)
{
for(int i=head[x];i!=-;i=edg[i].next)
{
int v=edg[i].v;
if(v==fa)continue; if(v==second.second)dfs(v,x,,max(last_ans,-first.first)+value[x]);
else
dfs(v,x,,max(last_ans,-second.first)+value[x]);
}
}
else
{
ans=max(ans,min(last_ans,second.first)+value[x]);
for(int i=head[x];i!=-;i=edg[i].next)
{
int v=edg[i].v;
if(v==fa)continue; if(v==second.second)dfs(v,x,,min(last_ans,first.first)+value[x]);
else
dfs(v,x,,min(last_ans,second.first)+value[x]);
}
}
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
init(n); for(int i=;i<=n;i++)
scanf("%lld",&value[i]); for(int i=;i<=n;i++)
{
long long a;
scanf("%lld",&a);
value[i]-=a;
} for(int i=;i<n;i++)
{
int u,v;
scanf("%d %d",&u,&v);
addedge(u,v);
addedge(v,u);
} /* if(n<=2)
{
long long sum=0;
for(int i=1;i<=n;i++)sum+=value[i];
printf("%lld\n",sum);
continue;
}*/ dfs(,-,,LLONG_MIN/);
dfs(,-,,LLONG_MAX/); printf("%lld\n",ans);
}
return ;
}

Acesrc and Travel的更多相关文章

  1. HDU 6662 Acesrc and Travel (换根dp)

    Problem Description Acesrc is a famous tourist at Nanjing University second to none. During this sum ...

  2. 2019杭电多校 hdu6662 Acesrc and Travel (树形dp

    http://acm.hdu.edu.cn/showproblem.php?pid=6662 题意:有两个人在树上博弈,每个点节点有两个分数a[i]和b[i],先手先选择一个点,后手在先手选的点的相邻 ...

  3. Acesrc and Travel(2019年杭电多校第八场06+HDU6662+换根dp)

    题目链接 传送门 题意 两个绝顶聪明的人在树上玩博弈,规则是轮流选择下一个要到达的点,每达到一个点时,先手和后手分别获得\(a_i,b_i\)(到达这个点时两个人都会获得)的权值,已经经过的点无法再次 ...

  4. HDU 6662 Acesrc and Travel 换根DP,宇宙最傻记录

    #include<bits/stdc++.h> typedef long long ll; using namespace std; const int maxn=1e6+50; cons ...

  5. 2019 Multi-University Training Contest 8 - 1006 - Acesrc and Travel - 树形dp

    http://acm.hdu.edu.cn/showproblem.php?pid=6662 仿照 CC B - TREE 那道题的思路写的,差不多.也是要走路径. 像这两种必须走到叶子的路径感觉是必 ...

  6. 【HDOJ6662】Acesrc and Travel(树形DP,换根)

    题意:有一棵n个点的树,每个点上有两个值a[i],b[i] A和B在树上行动,A到达i能得到a[i]的偷税值,B能得到b[i],每次行动只能选择相邻的点作为目标 两个人都想最大化自己的偷税值和对方的差 ...

  7. 【HDU6662】Acesrc and Travel【树形DP】

    题目大意:给你一棵树,每个节点有一个权值,Alice和Bob进行博弈,起点由Alice确定,确定后交替选择下一个点,Alice目标是最终值尽可能大,Bob目标是尽可能小 题解:很明显是树形DP,那么考 ...

  8. 【HDU6662】Acesrc and Travel(树型Dp)

    题目链接 大意 给出一颗树,每个点上有一个权值\(A[i]\),有两个绝顶聪明的人甲和乙. 甲乙两人一起在树上轮流走,不能走之前经过的点.(甲乙时刻在一起) 甲先手,并可以确定起点.甲想要走过的点权之 ...

  9. 2019DX#8

    Solved Pro.ID Title Ratio(Accepted / Submitted)   1001 Acesrc and Cube Hypernet 7.32%(3/41)   1002 A ...

随机推荐

  1. VMware Workstation 10 配置Ubuntu环境

    分享到 一键分享 QQ空间 新浪微博 百度云收藏 人人网 腾讯微博 百度相册 开心网 腾讯朋友 百度贴吧 豆瓣网 搜狐微博 百度新首页 QQ好友 和讯微博 更多... 百度分享 VMware Work ...

  2. Halt- Linux必学的60个命令

    1.作用 halt命令的作用是关闭系统,它的使用权限是超级用户. 2.格式 halt [-n] [-w] [-d] [-f] [-i] [-p] 3.主要参数说明 -n:防止sync系统调用,它用在用 ...

  3. 单体内置对象——Global对象

    单体内置对象的定义:由ECMAScript实现提供的.不依赖于宿主环境的对象,这些对象在ECMAScript程序执行之前已经存在了.意思就是说:开发人员不必显式地实例化内置对象,因为他们已经实例化了. ...

  4. python spark环境配置

              在配置Hadoop之前,应该先做以下配置   1.更改主机名 首先更改主机名,目的是为了方便管理.  输入:hostname  查看本机的名称  使用 hostname 修改当前主 ...

  5. rsyslog 服务器重启后 发现不能接受到外部日志 只能接受本地日志 关闭防火墙即可

    rsyslog 服务器重启后 发现不能接受到外部日志 只能接受本地日志  关闭防火墙即可 1 关闭防火墙: # systemctl stop firewalld 2 将SELINUX设置为disabl ...

  6. SpringBoot_Mybatis MyBatisPlus

    一.SpringBoot中使用Mybatis springBoot中使用mybatis跟以前spring中使用方法一样. 1.mybatis配置: spring: datasource: url: j ...

  7. 传递闭包+求概率——列项相消法lightoj1321好题

    主要是要想到边与边的通过概率是独立的,所以先求出最终的概率,然后用推出的公式求总期望即可 最终概率E[0][n-1],可以用传递闭包来做 裂项相消法都不会了.. /* 闭包上推期望 每条边都具有独立性 ...

  8. W: 仓库 “http://ppa.launchpad.net/levi-armstrong/qt-libraries-trusty/ubuntu xenial Release” 没有 Release 文件。

    解决办法:将对应的PPA删除掉即可 使用以下命令切换到对应PPA目录: cd /etc/apt/sources.list.dsudo rm levi-armstrong-ubuntu-qt-libra ...

  9. CSS3如何实现圆圈转圈,附demo

    如图,如何实现圆圈转圈? 主要还是CSS3动画(只兼容了谷歌,需要兼容其它浏览器,加前缀即可) .move1 { animation: myMove1 5s ease-in infinite alte ...

  10. Android 之 BroadcaseReceiver

    1.在AndroidManifest.xml中注册 <receiver android:name=".MyReceiver"> <intent-filter &g ...