CF-528D Fuzzy Search(FFT字符串匹配)
题意:
给定一个模式串和目标串按下图方式匹配,错开位置不多于k

解题思路:
总共只有\(A C G T\)四个字符,那么我们可以按照各个字符进行匹配,比如按照\(A\)进行匹配时,当\(k=1\)时,我们将目标串
\(ACAT\)化作
\(1~0~1~0\)
模式串
\(AGCAATTCAT\)化作
\(1~1~1~1~1~1~0~1~1~1\)
同样是反置目标串
可以得到以x为匹配终点的位置的匹配函数\(p(X)=\sum_{i+j=x}A(i)B(j)\)
如此进行4次FFT,最后如果目标位置贡献等于目标串长度,则说明匹配成功
#include <bits/stdc++.h>
using namespace std;
/* freopen("k.in", "r", stdin);
freopen("k.out", "w", stdout); */
//clock_t c1 = clock();
//std::cerr << "Time:" << clock() - c1 <<"ms" << std::endl;
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#define de(a) cout << #a << " = " << a << endl
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, a, n) for (int i = n; i >= a; i--)
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef vector<int, int> VII;
#define inf 0x3f3f3f3f
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll MAXN = 1e6 + 7;
const ll MAXM = 1e6 + 7;
const ll MOD = 998244353;
const double eps = 1e-6;
const double pi = acos(-1.0);
template <class T>
inline void in(T &x)
{
static char ch;
static bool neg;
for (ch = neg = 0; ch < '0' || '9' < ch; neg |= ch == '-', ch = getchar())
;
for (x = 0; '0' <= ch && ch <= '9'; (x *= 10) += ch - '0', ch = getchar())
;
x = neg ? -x : x;
}
struct Complex
{
double x, y;
Complex(double xx = 0, double yy = 0) { x = xx, y = yy; }
} a[MAXN], b[MAXN], c[MAXN], ans[MAXN];
Complex operator+(Complex a, Complex b) { return Complex(a.x + b.x, a.y + b.y); }
Complex operator-(Complex a, Complex b) { return Complex(a.x - b.x, a.y - b.y); }
Complex operator*(Complex a, Complex b) { return Complex(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x); } //不懂的看复数的运算那部分
int N, M;
int l, r[MAXN];
int limit = 1;
void FFT(Complex *A, int type)
{
for (int i = 0; i < limit; i++)
if (i < r[i])
swap(A[i], A[r[i]]); //求出要迭代的序列
for (int mid = 1; mid < limit; mid <<= 1)
{ //待合并区间的长度的一半
Complex Wn(cos(pi / mid), type * sin(pi / mid)); //单位根
for (int R = mid << 1, j = 0; j < limit; j += R)
{ //R是区间的长度,j表示前已经到哪个位置了
Complex w(1, 0); //幂
for (int k = 0; k < mid; k++, w = w * Wn)
{ //枚举左半部分
Complex x = A[j + k], y = w * A[j + mid + k]; //蝴蝶效应
A[j + k] = x + y;
A[j + mid + k] = x - y;
}
}
}
/*if (type == -1)
for (int i = 0; i < limit; ++i)
a[i].x /= limit;//我们推过的公式里面有一个1/n这一项*/
}
char s[MAXN], t[MAXN];
void init(int N, int M)
{
while (limit <= N + M)
limit <<= 1, l++;
for (int i = 0; i < limit; i++)
r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
memset(a, 0, sizeof(a));
memset(b, 0, sizeof(b));
}
int change(char str)
{
if (str == 'A')
return 1;
else if (str == 'T')
return 2;
else if (str == 'G')
return 3;
else
return 4;
}
int pre[MAXN], cnt;
int main()
{
int n, m, k;
scanf("%d%d%d %s %s", &n, &m, &k, s, t);
reverse(t, t + m);
init(n, m);
for (int ca = 1; ca <= 4; ca++)
{
cnt = -1;
memset(pre, 0, sizeof(pre));
memset(a, 0, sizeof(a));
memset(b, 0, sizeof(b));
for (int i = 0; i < n; i++)
{
if (change(s[i]) == ca)
pre[++cnt] = i;
a[i].x = change(s[i]) == ca ? 1 : 0, a[i].y = 0;
}
for (int i = 0; i < m; i++)
b[i].x = change(t[i]) == ca ? 1 : 0, b[i].y = 0;
int now = -1;
for (int i = 0; i <= cnt; i++)
{
int L = max(pre[i] - k, 0);
int R = min(pre[i] + k, n - 1);
if (now > R)
continue;
now = max(L, now);
for (; now <= R; now++)
a[now].x = 1;
now--;
}
FFT(a, 1);
FFT(b, 1);
for (int i = 0; i < limit; i++)
a[i] = b[i] * a[i];
FFT(a, -1);
for (int i = 0; i < limit; i++)
c[i] = c[i] + a[i];
}
int ans = 0;
for (int i = m - 1; i < limit; i++)
if (int(c[i].x / limit + 0.5) == m)
ans++;
printf("%d\n", ans);
return 0;
}
CF-528D Fuzzy Search(FFT字符串匹配)的更多相关文章
- CF 528D. Fuzzy Search NTT
CF 528D. Fuzzy Search NTT 题目大意 给出文本串S和模式串T和k,S,T为DNA序列(只含ATGC).对于S中的每个位置\(i\),只要中[i-k,i+k]有一个位置匹配了字符 ...
- Codeforces.528D.Fuzzy Search(FFT)
题目链接 \(Descripiton\) 给出文本串S和模式串T和k,S,T为DNA序列(只含\(A,T,G,C\)).对于S中的每个位置\(i\),只要\(s[i-k]\sim s[i+k]\)中有 ...
- CodeForces - 528D Fuzzy Search (FFT求子串匹配)
题意:求母串中可以匹配模式串的子串的个数,但是每一位i的字符可以左右偏移k个位置. 分析:类似于 UVALive -4671. 用FFT求出每个字符成功匹配的个数.因为字符可以偏移k个单位,先用尺取法 ...
- 2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 H题 Rock Paper Scissors Lizard Spock.(FFT字符串匹配)
2018 ACM-ICPC 中国大学生程序设计竞赛线上赛:https://www.jisuanke.com/contest/1227 题目链接:https://nanti.jisuanke.com/t ...
- P4173 残缺的字符串(FFT字符串匹配)
P4173 残缺的字符串(FFT字符串匹配) P4173 解题思路: 经典套路将模式串翻转,将*设为0,设以目标串的x位置匹配结束的匹配函数为\(P(x)=\sum^{m-1}_{i=0}[A(m-1 ...
- codeforces 528D Fuzzy Search
链接:http://codeforces.com/problemset/problem/528/D 正解:$FFT$. 很多字符串匹配的问题都可以用$FFT$来实现. 这道题是要求在左边和右边$k$个 ...
- CF528D. Fuzzy Search [FFT]
CF528D. Fuzzy Search 题意:DNA序列,在母串s中匹配模式串t,对于s中每个位置i,只要s[i-k]到s[i+k]中有c就认为匹配了c.求有多少个位置匹配了t 预处理\(f[i][ ...
- 【Codeforces528D】Fuzzy Search FFT
D. Fuzzy Search time limit per test:3 seconds memory limit per test:256 megabytes input:standard inp ...
- BZOJ4259: 残缺的字符串(FFT 字符串匹配)
题意 题目链接 Sol 知道FFT能做字符串匹配的话这就是个裸题了吧.. 考虑把B翻转过来,如果\(\sum_{k = 0}^M (B_{i - k} - A_k)^2 * B_{i-k}*A_k = ...
随机推荐
- 在Spring Boot中使用Docker在测试中进行高级功能测试
最近又学到了很多新知识,感谢优锐课老师细致地讲解,这篇博客记录下自己所学所想. 想更多地了解Spring Boot项目中的功能测试吗?这篇文章带你了解有关在测试中使用Docker容器的更多信息. 本文 ...
- poj1737-----这题有毒
这题有毒,不取模还会溢出,我哭了 <进阶指南>p337动态规划 公式就是个这了,代码就不贴了,反正是错的,用java算了
- mysql主从之多线程复制
多线程复制 mysql 主从复制原理: 1. master 节点上的binlogdump 线程,在slave 与其正常连接的情况下,将binlog 发送到slave 上. 2. slave 节点的I/ ...
- 选题Scrum立会报告+燃尽图 04
此作业的要求参见:https://edu.cnblogs.com/campus/nenu/2019fall/homework/8682 组长:杨天宇 组员:魏新,罗杨美慧,王歆瑶,徐丽君 组名:组长 ...
- 【题解】PKUWC2018简要题解
[题解]PKUWC2018简要题解 Minimax 定义结点x的权值为: 1.若x没有子结点,那么它的权值会在输入里给出,保证这类点中每个结点的权值互不相同. 2.若x有子结点,那么它的权值有p的概率 ...
- 洛谷$P3308\ [SDOI2014]LIS$ 网络流
正解:网络流 解题报告: 传送门$QwQ$ 恩先不考虑关于那个附加属性的限制,考虑这题怎么做? 首先这题从名字开始就让人忍不住联想起网络流24题里的那个最长不下降子序列?于是同样考虑预处理一个$f$呗 ...
- JAVA字节码文件之结构
开发工具:IEDA.JDK1.8.WinHex 一.字节码文件结构 源代码 package com.jalja.java.bytecode; /** * @Auther: XL * @Date: 20 ...
- 跌宕起伏的java帝国史,剖析谷歌甲骨文长达8年的版权战争
这篇博文是我在B站上发的一个科普java的视频文案整理,本来发过一次了,但是有几种不严谨的地方只能删掉重新发了一下,内容如标题,感兴趣的码农朋友可以观看视频的版本,欢迎提提意见啥的,感谢~https: ...
- vue 2.0以上怎么在手机中运行自己的项目
第一步 打开vue项目 第二步 打开项目config/index.js文件,然后找到 module.exports 配置里面的 dev 配置,修改字段host:0.0.0.0 第三步 打开cmd输入i ...
- 使用百度NLP接口对搜狐新闻做分类
一.简介 本文主要是要利用百度提供的NLP接口对搜狐的新闻做分类,百度对NLP接口有提供免费的额度可以拿来练习,主要是利用了NLP里面有个文章分类的功能,可以顺便测试看看百度NLP分类做的准不准.详细 ...