1. 调用方法:

AffinityPropagation(damping=0.5max_iter=200convergence_iter=15copy=Truepreference=Noneaffinity=’euclidean’verbose=False)

参数:

damping : float, optional, default: 0.5       防止更新过程中数值震荡

max_iter : int, optional, default: 200

convergence_iter : int, optional, default: 15  

  如果类簇数目在达到这么多次迭代以后仍然不变的话,就停止迭代。

copy : boolean, optional, default: True

  Make a copy of input data.

preference : array-like, shape (n_samples,) or float, optional

  每个points的preference。具有更大preference的点更可能被选为exemplar。类簇的数目受此值的影响,如果没有传递此参数,它们         会被设置成input similarities的中值。???

affinity : string, optional, default=``euclidean``

  度量距离的方式,推荐precomputed and euclidean这两种,euclidean uses the negative squared euclidean distance       between points.

verbose : boolean, optional, default: False

属性:

cluster_centers_indices_ : array, shape (n_clusters,)

  类簇中心的索引

cluster_centers_ : array, shape (n_clusters, n_features)

  类簇中心 (if affinity != precomputed)

labels_ : array, shape (n_samples,)

  每个point的标签

affinity_matrix_ : array, shape (n_samples, n_samples)

  Stores the affinity matrix used in fit.

n_iter_ : int

  达到收敛需要的迭代次数。

2. scikit-learn介绍

http://scikit-learn.org/stable/modules/clustering.html#affinity-propagation

3. 算法复杂性

,与样本数成正比。

4.算法描述

引入阻尼因子:

Affinity Propagation的更多相关文章

  1. AP(affinity propagation)研究

    待补充…… AP算法,即Affinity propagation,是Brendan J. Frey* 和Delbert Dueck于2007年在science上提出的一种算法(文章链接,维基百科) 现 ...

  2. Affinity Propagation Algorithm

    The principle of Affinity Propagation Algorithm is discribed at above. It is widly applied in many f ...

  3. Affinity Propagation Demo2学习【可视化股票市场结构】

    这个例子利用几个无监督的技术从历史报价的变动中提取股票市场结构. 使用报价的日变化数据进行试验. Learning a graph structure 首先使用sparse inverse(相反) c ...

  4. Affinity Propagation Demo1学习

    利用AP算法进行聚类: 首先导入需要的包: from sklearn.cluster import AffinityPropagation from sklearn import metrics fr ...

  5. AP聚类算法(Affinity propagation Clustering Algorithm )

    AP聚类算法是基于数据点间的"信息传递"的一种聚类算法.与k-均值算法或k中心点算法不同,AP算法不需要在运行算法之前确定聚类的个数.AP算法寻找的"examplars& ...

  6. knn/kmeans/kmeans++/Mini Batch K-means/Affinity Propagation/Mean Shift/层次聚类/DBSCAN 区别

    可以看出来除了KNN以外其他算法都是聚类算法 1.knn/kmeans/kmeans++区别 先给大家贴个简洁明了的图,好几个地方都看到过,我也不知道到底谁是原作者啦,如果侵权麻烦联系我咯~~~~ k ...

  7. [Python] 机器学习库资料汇总

    声明:以下内容转载自平行宇宙. Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: ...

  8. 【转帖】Python在大数据分析及机器学习中的兵器谱

    Flask:Python系的轻量级Web框架. 1. 网页爬虫工具集 Scrapy 推荐大牛pluskid早年的一篇文章:<Scrapy 轻松定制网络爬虫> Beautiful Soup ...

  9. {Reship}{Code}{CV}

    UIUC的Jia-Bin Huang同学收集了很多计算机视觉方面的代码,链接如下: https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/in ...

随机推荐

  1. Python 任务自动化工具 tox 教程

    在我刚翻译完的 Python 打包系列文章中,作者提到了一个神奇的测试工具 tox,而且他本人就是 tox 的维护者之一.趁着话题的相关性,本文将对它做简单的介绍,说不定大家在开发项目时能够用得上. ...

  2. React-router路由4.0版本用法

    第一步:引包两个 命令:cnpm i -S react-router react-router-dom 第二步:用路由管理APP页面 1.创建主路由管理页面,在这里使用了路由嵌套 import Rea ...

  3. Java项目之客户信息管理软件

    模拟实现基于文本界面的客户信息管理软件,该软件能够实现对客户对象的插入. 修改和删除(用数组实现),并能够打印客户明细表. 项目采用分级菜单方式.主菜单如下: “添加客户”的界面及操作过程如下所示: ...

  4. java实现阿里云短信服务发送验证码

    由于做项目的时候遇到了接第三方短信服务,所以记录一下. 一.新建一个maven项目并导入相关依赖 <!--手机发送短信验证码--> <dependency> <group ...

  5. Flask快速实现简单python接口

    Flask 是一个轻量级 web 框架,自由.灵活.可扩展性强.Flask 本身相当于一个内核,大部分功能都需要扩展第三方库. Flask 框架有多“轻量”呢,之前写过一篇 Django实现restf ...

  6. 洛谷 UVA11021 Tribles

    UVA11021 Tribles 题意翻译 题目大意 一开始有kk种生物,这种生物只能活1天,死的时候有p_ipi​的概率产生ii只这种生物(也只能活一天),询问m天内所有生物都死的概率(包括m天前死 ...

  7. SliverAppBar 介绍及使用

    SliverAppBar控件可以实现页面头部区域展开.折叠的效果,类似于Android中的CollapsingToolbarLayout.先看下SliverAppBar实现的效果,效果图如下: Sli ...

  8. Google搜索成最大入口,简单谈下个人博客的SEO

    个人静态博客SEO该考虑哪些问题呢?本篇文章给你答案 咖啡君在开始写文章时首选了微信公众号作为发布平台,但公众号在PC端的体验并不好,连最基本的文章列表都没有,所以就搭建了运维咖啡吧的网站,可以通过点 ...

  9. 异数OS 织梦师-Xnign(四)-- 挑战100倍速Nginx,脚踩F5硬件负载均衡

    . 异数OS 织梦师-Xnign(四)– 挑战100倍速Nginx,脚踩F5硬件负载均衡 本文来自异数OS社区 github: https://github.com/yds086/HereticOS ...

  10. 分布式唯一ID自增(雪花算法)

    public class IdWorker { // ==============================Fields===================================== ...