Longge's problem
求\(\sum_{i=1}^ngcd(i,n)\),\(n< 2^{31}\)。
解
理解1:
注意式子的实际意义,显然答案只可能在n的约数中,而现在问题变成了每个约数出现了几次,而一个约数d要出现的次数,自然需要这个数有约数d,其他的约数与之互斥,于是考虑欧拉函数,故我们有
\]
以此枚举n的约数爆算即可,时间复杂度不难得知为\(O(\sigma(n)\sqrt{n})\)。
理解2:
约数计数问题,考虑反演,于是有
\]
设
\]
\]
由Mobius反演定理,带入原式我们有
\]
\]
同理解1做法即可。
于是我们可以小结一下,同排列组合一样,约数计数问题,也有它的实际意义的理解,两者侧重点不同,一个侧重思维,一个侧重代数变换,但是殊途同归,而且不难得知最后的答案其实就是\(\varphi *id\),我们可以使用杜教筛对之优化,数据范围可以出到\(10^{11}\),但无论如何,重点都在于对于约数的巧妙的理解。
参考代码:
#include <iostream>
#include <cstdio>
#define il inline
#define ri register
#define ll long long
using namespace std;
il ll Phi(ll);
int main(){
ll ans,n,i;
while(scanf("%lld",&n)!=EOF){
for(ans&=0,i=1;i*i<n;++i)
if(!(n%i)){
ans+=(n/i)*Phi(i);
ans+=(i)*Phi(n/i);
}
if(i*i==n)ans+=i*Phi(i);
printf("%lld\n",ans);
}
return 0;
}
il ll Phi(ll n){
ri ll i,ans(n);
for(i=2;i<=n/i;++i)
if(!(n%i)){
(ans/=i)*=(i-1);
while(!(n%i))n/=i;
}if(n>1)(ans/=n)*=(n-1);
return ans;
}
Longge's problem的更多相关文章
- Longge's problem poj2480 欧拉函数,gcd
Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6918 Accepted: 2234 ...
- POJ2480 Longge's problem
题意 Language:Default Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1064 ...
- poj 2480 Longge's problem 欧拉函数+素数打表
Longge's problem Description Longge is good at mathematics and he likes to think about hard mathem ...
- POJ 2480 Longge's problem 欧拉函数—————∑gcd(i, N) 1<=i <=N
Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6383 Accepted: 2043 ...
- poj2480——Longge's problem(欧拉函数)
Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9190 Accepted: 3073 ...
- poj 2480 Longge's problem [ 欧拉函数 ]
传送门 Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7327 Accepted: 2 ...
- Longge's problem(欧拉函数应用)
Description Longge is good at mathematics and he likes to think about hard mathematical problems whi ...
- POJ_2480 Longge's problem【积性函数+欧拉函数的理解与应用】
题目: Longge is good at mathematics and he likes to think about hard mathematical problems which will ...
- 题解报告:poj 2480 Longge's problem(欧拉函数)
Description Longge is good at mathematics and he likes to think about hard mathematical problems whi ...
随机推荐
- I/O与NIO(异步I/O)
1.原来的I/O库与NIO最重要的区别是数据打包和传输方式的不同,原来的I/O以流的方式处理数据,而NIO以块的方式处理数据. 面向流的I/O系统一次一个字节地处理数据.一个输入流产生一个字节的数据, ...
- Centos7.5安装分布式Hadoop2.6.0+Hbase+Hive(CDH5.14.2离线安装tar包)
Tags: Hadoop Centos7.5安装分布式Hadoop2.6.0+Hbase+Hive(CDH5.14.2离线安装tar包) Centos7.5安装分布式Hadoop2.6.0+Hbase ...
- RTC, Real Time Clock
配置 写入RTC_PRL, RTC_CNT, RTC_ALR寄存器时,需要先进入配置模式,通过把RTC_CRL寄存器的CNF位置一. 另外,在每次配置一个寄存器时必须等待上一次配置完成,可以通过检测R ...
- spring boot 项目打成war,丢入tomcat独立运行
小插曲:通过cmd运行startup.bat,cmd界面显示乱码 解决方法:进入tomcat目录,conf文件夹,用编辑器打开logging.properties 将java.util.logging ...
- NPE问题
“防止 NPE,是程序员的基本修养.”NPE(Null Pointer Exception) 参考: https://www.jianshu.com/p/9915f2e34a13
- Windows7 打开word2003提示:向程序发送命令时出现错误 解决方案
1.关闭所有打开的Word文档:(包括任务管理器里的进程)2.复制这条命令:%appdata%\microsoft\templates3.开始 → 运行 → 粘贴上面复制的命令 → 确定4.在打开的目 ...
- vue使用CDN全局安装百度地图
参考: https://www.zhangshengrong.com/p/O3aA7x5X4E/ 一.在public/index.html中引入cdn <script src="htt ...
- 树形dp——cf1010D
一个点的改变如果对根节点的值不会造成任何影响,那么这个点的所有子节点的改变也不会对根节点造成影响 因为每次只改一个叶子节点,也就是一条到根的路径,可以先预处理出初始情况下的每个结点的值 分别讨论根节点 ...
- 数组那些事(slice,splice,forEach,map,filter等等)
周五,再过会要下班了,刚才把<javascript高级程序设计>数组这块又看了下,加深下记忆.今天来继续练练笔,嘿嘿!(写下自己印象不深的东西) 一.数组的定义(数组定义分为两种) 方法一 ...
- js--判断当前环境是否为iphonex环境
/** * 判断是否是iphonex */ function getIsIphonex () { var u = navigator.userAgent; var isIOS = !!u.match( ...