【SDOI2015】约数个数和
题面
求\(\sum_{i=1}^n\sum_{j=1}^md(ij)\)
\(\leq 50000\)组数据,\(1\leq n,m\leq 50000\)。
题目分析
首先,你需要知道一个结论:
\]
你可以认为\(x,y\)表示你选择的因数为\(\frac i x \cdot y\),即:\(x\)表示\(i\)中不要的部分,\(y\)表示\(j\)中要的部分。
如果\(gcd(x,y)==p_i\),那么\(\frac i x\)表示在约数中拿掉\(p_i\),\(y\)表示在约数中加入\(p_i\),这样一拿一加,自然会在答案中重复。
那么,现在我们的问题转化为求
\]
这样还是无法计算,所以我们把枚举因数提前
\]
现在看起来就可以反演了,设\(f(x)\)表示\(gcd(i,j)==x\)时的答案,\(g(x)\)表示\(gcd(i,j)==kx,k\in Z\)时的答案,则:
f(x)&=\sum\limits_{i=1}^n\sum\limits_{j=1}^m\lfloor\frac n i\rfloor\lfloor\frac m j\rfloor[gcd(i,j)==x]\\
g(x)&=\sum\limits_{x|d}^nf(d)\\
&=\sum\limits_{i=1}^n\sum\limits_{j=1}^m\lfloor\frac n i\rfloor\lfloor\frac m j\rfloor[x|gcd(i,j)]\\
&=\sum\limits_{i=1}^{\lfloor\frac n x\rfloor}\sum\limits_{j=1}^{\lfloor\frac m x\rfloor}\lfloor\frac n {ix}\rfloor\lfloor\frac m {jx}\rfloor\\
&=\sum\limits_{i=1}^{\lfloor\frac n x\rfloor}\lfloor\frac n {ix}\rfloor\sum\limits_{j=1}^{\lfloor\frac m x\rfloor}\lfloor\frac m {jx}\rfloor
\end{split}
\]
比较巧的一点是:\(\sum\limits_{i=1}^n\lfloor\frac n i\rfloor\)可以表示\(1 \sim n\)的约数个数的前缀和。
约数个数可以在线性筛中预处理,原理如下:
对于\(x=p_1^{a_1}p_2^{a_2}p_3^{a_3}...p_n^{a_n}\),\(x\)的约数个数为\((a_1+1)\cdot(a_2+1)\cdot(a_3+1)\cdot...\cdot(a_n+1)\)
由于在线性筛中,每个数只会被它最小的质因子更新,所以:
如果\(i\%prime[j]==0\),说明\(i\)中含有\(prime[j]\),此时\(x\)中\(prime[j]\)的个数为\(i\)中\(prime[j]\)的个数\(+1\),\(x\)的约数个数=\(i\)的约数个数/(\(i\)中\(prime[j]\)的个数)*(\(i\)中\(prime[j]\)的个数\(+1\));
如果\(i\%prime[j]!=0\),说明\(prime[j]\)在\(x\)中只有\(1\)个,\(x\)的约数个数=\(i\)的约数个数*\(2\)。
这样一来\(g(x)\)可以进行预处理,然后\(O(1)\)计算。
反演得\(f(x)=\sum\limits_{x|d}^n\mu(\frac dx)g(d)\),为了针对多组数据,整除分块即可。
代码实现
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=50005;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int mu[N],prime[N];
bool vis[N];
int ys[N],lw[N],g[N];
int main(){
mu[1]=g[1]=1;
for(int i=2;i<=50000;i++){
if(!vis[i])prime[++prime[0]]=i,mu[i]=-1,ys[i]=2,lw[i]=1;
for(int j=1;j<=prime[0]&&i*prime[j]<=50000;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
ys[i*prime[j]]=ys[i]/(lw[i]+1)*(lw[i]+2);
lw[i*prime[j]]=lw[i]+1;
break;
}
mu[i*prime[j]]=-mu[i];
ys[i*prime[j]]=ys[i]*2,lw[i*prime[j]]=1;
}
mu[i]+=mu[i-1],g[i]=g[i-1]+ys[i];
}
int T=Getint();
while(T--){
int n=Getint(),m=Getint();
if(n>m)swap(n,m);
LL ans=0;
for(int l=1,r;l<=n;l=r+1){
r=min(n/(n/l),m/(m/l));
ans+=1ll*(mu[r]-mu[l-1])*g[n/l]*g[m/l];
}
cout<<ans<<'\n';
}
return 0;
}
【SDOI2015】约数个数和的更多相关文章
- BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演
BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表 ...
- P3327/bzoj3994 [SDOI2015]约数个数和(莫比乌斯反演)
P3327 [SDOI2015]约数个数和 神犇题解(转) 无话可补 #include<iostream> #include<cstdio> #include<cstri ...
- 【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)
3994: [SDOI2015]约数个数和 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接 ...
- 洛谷 [SDOI2015]约数个数和 解题报告
[SDOI2015]约数个数和 题目描述 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求$ \sum\limits^N_{i=1}\sum\limits^M_{j=1}d(ij)$ ...
- BZOJ 3994: [SDOI2015]约数个数和
3994: [SDOI2015]约数个数和 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 898 Solved: 619[Submit][Statu ...
- 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演
[BZOJ3994][SDOI2015]约数个数和 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...
- 洛谷P3327 - [SDOI2015]约数个数和
Portal Description 共\(T(T\leq5\times10^4)\)组数据.给出\(n,m(n,m\leq5\times10^4)\),求\[\sum_{i=1}^n\sum_{j= ...
- P3327 [SDOI2015]约数个数和 莫比乌斯反演
P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...
- [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)
[BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...
- 【BZOJ】3994: [SDOI2015]约数个数和
题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...
随机推荐
- csp-s模拟测试95
csp-s模拟测试95 去世场祭. $T1$:这不裸的除法分块吗. $T2$:这不裸的数据结构优化$Dp$吗. $T3$:这不裸的我什么都不会搜索骗$30$分吗. 几分钟后. 这除法分块太劲了..(你 ...
- python输入输出(二)
输出 >>> print(5) 5 >>> print(5*6) 30 >>> s1 = "hello" >>&g ...
- Git 本地仓库管理
目录 目录 基本概念 配置 配置个人帐号信息 安装 本地版本库 创建 Git 仓库 Git 仓库版本回退 修改管理 基本概念 工作区(Working Directory): 就是你在电脑里能看到的目录 ...
- LeetCode刷题笔记-递归-将有序数组转换为二叉搜索树
题目描述 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定有序数组: [-10, ...
- 如何理解CUDA中的cudaMalloc()的参数
首先看下此运行时函数的原型: cudaError_t cudaMalloc (void **devPtr, size_t size ); 主要的第一个参数.为什么是两个星星呢?用个例子来说明下. fl ...
- ATC/TC/CF
10.25 去打 CF,然后被 CF 打了. CF EDU 75 A. Broken Keyboard 精神恍惚,WA 了一发. B. Binary Palindromes 比赛中的憨憨做法,考虑一个 ...
- C#下面的次幂表达
嗯,一个错误.不能用x^y表达,要用math.pow(x,y).
- java异常继承何类,运行时异常与一般异常的区别
一.基本概念 Throwable是所有异常的根,java.lang.ThrowableError是错误,java.lang.ErrorException是异常,java.lang.Exception ...
- flink支持的数据类型讲解(可序列化) 和 内置累加器的运用
flink支持的数据类型Flink对DataSet和DataStream中可使用的类型加了一些约束.原因是系统可以通过分析这些类型来确定有效的执行策略和选择不同的序列化方式.有7种不同的数据类型:1. ...
- FIN_WAIT_2
来自转载:http://blog.sina.com.cn/s/blog_8e5d24890102w9yi.html 上图对排除和定位网络或系统故障时大有帮助,但是怎样牢牢地将这张图刻在脑中呢?那么你就 ...