Luogu P2458 [SDOI2006]保安站岗(树形dp)
题意
题目描述
五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序。
已知整个地下超市的所有通道呈一棵树的形状;某些通道之间可以互相望见。总经理要求所有通道的每个端点(树的顶点)都要有人全天候看守,在不同的通道端点安排保安所需的费用不同。
一个保安一旦站在某个通道的其中一个端点,那么他除了能看守住他所站的那个端点,也能看到这个通道的另一个端点,所以一个保安可能同时能看守住多个端点(树的结点),因此没有必要在每个通道的端点都安排保安。
编程任务:
请你帮助超市经理策划安排,在能看守全部通道端点的前提下,使得花费的经费最少。
输入输出格式
输入格式:
第\(1\)行\(n\),表示树中结点的数目。
第\(2\)行至第\(n+1\)行,每行描述每个通道端点的信息,依次为:该结点标号\(i(0<i\leq n)\),在该结点安置保安所需的经费\(k(k\leq 10000)\),该边的儿子数\(m\),接下来\(m\)个数,分别是这个节点的\(m\)个儿子的标号\(r_1,r_2,\dots ,r_m\)。
对于一个\(n(0<n\leq 1500)\)个结点的树,结点标号在\(1\)到\(n\)之间,且标号不重复。
输出格式:
最少的经费。
如右图的输入数据示例
输出数据示例:
输入输出样例
输入样例#1:
6
1 30 3 2 3 4
2 16 2 5 6
3 5 0
4 4 0
5 11 0
6 5 0
输出样例#1:
25
说明
样例说明:在结点\(2,3,4\)安置\(3\)个保安能看守所有的\(6\)个结点,需要的经费最小:\(25\)
思路
开始复健树形\(dp\)。
对于每一个结点,可能有三种保护状态:被儿子保护,被自己保护,被父亲保护。所以我们可以这样设计状态:\(f[i][0/1/2]\)表示结点\(i\)的三种状态下的子树最小经费要求。在下面的代码中,\(0\)表示被父亲保护,\(1\)表示被儿子保护,\(2\)表示被自己保护。转移方程也很简单了。
void dfs(int now)
{
dp[now][0]=0,dp[now][1]=0x3f3f3f3f,dp[now][2]=val[now];//初始值
for(int i=top[now];i;i=nex[i])
{
dfs(to[i]);
dp[now][0]+=min(dp[to[i]][1],dp[to[i]][2]);//儿子不可能被自己保护
dp[now][2]+=min(dp[to[i]][0],min(dp[to[i]][1],dp[to[i]][2]));//儿子的保护状态可以随意选择。
}
for(int i=top[now];i;i=nex[i]) dp[now][1]=min(dp[now][1],dp[now][0]-min(dp[to[i]][1],dp[to[i]][2])+dp[to[i]][2]);//相当于直接记录最大花费的儿子
}
AC代码
#include<bits/stdc++.h>
using namespace std;
const int MAXN=1505;
int n,val[MAXN],dp[MAXN][3];
int cnt,top[MAXN],to[MAXN],nex[MAXN];
bool vis[MAXN];
int read()
{
int re=0;char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
return re;
}
void dfs(int now)
{
dp[now][0]=0,dp[now][1]=0x3f3f3f3f,dp[now][2]=val[now];
for(int i=top[now];i;i=nex[i])
{
dfs(to[i]);
dp[now][0]+=min(dp[to[i]][1],dp[to[i]][2]);
dp[now][2]+=min(dp[to[i]][0],min(dp[to[i]][1],dp[to[i]][2]));
}
for(int i=top[now];i;i=nex[i]) dp[now][1]=min(dp[now][1],dp[now][0]-min(dp[to[i]][1],dp[to[i]][2])+dp[to[i]][2]);
}
int main()
{
n=read();
for(int i=0;i<n;i++)
{
int x=read();val[x]=read();int j=read();
while(j--)
{
int y=read();vis[y]=true;
to[++cnt]=y,nex[cnt]=top[x],top[x]=cnt;
}
}
for(int i=1;i<=n;i++)
if(!vis[i])
{
dfs(i);
printf("%d",min(dp[i][1],dp[i][2]));
return 0;
}
}
Luogu P2458 [SDOI2006]保安站岗(树形dp)的更多相关文章
- P2458 [SDOI2006]保安站岗[树形dp]
题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...
- Luogu P2458 [SDOI2006]保安站岗【树形Dp】
题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...
- [Luogu][P2458] [SDOI2006]保安站岗
题目链接 看起来似乎跟最小点覆盖有点像.但区别在于: 最小点覆盖要求所有边在其中,而本题要求所有点在其中. 即:一个点不选时,它的儿子不一定需要全选. 画图理解: 对于这样一幅图,本题中可以这样选择: ...
- C++ 洛谷 P2458 [SDOI2006]保安站岗 from_树形DP
P2458 [SDOI2006]保安站岗 没学树形DP的,看一下. 题目大意:一棵树有N个节点,现在需要将所有节点都看守住,如果我们选择了节点i,那么节点i本身,节点i的父亲和儿子都会被看守住. 每个 ...
- [luogu 2458][SDOI2006]保安站岗
题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...
- 洛谷 P2458 [SDOI2006]保安站岗
题目传送门 解题思路: 树形DP 可知一个点被控制有且仅有一下三种情况: 1.被父亲节点上的保安控制 2.被儿子节点上的保安控制 3.被当前节点上的保安控制 我们设dp[0/1/2][u]表示u节点所 ...
- [SDOI2006] 保安站岗
题目链接 第一遍不知道为什么就爆零了…… 第二遍改了一下策略,思路没变,结果不知道为什么就 A 了??? 树形 DP 经典问题:选择最少点以覆盖树上所有点(边). 对于本题,设 dp[i][0/1][ ...
- 【Luogu】P3174毛毛虫(树形DP)
题目链接 树形DP水题,设f[x][0]是以x为根的子树,内部只有半条链(就是链的两个端点一个在子树里,一个不在子树里)的最大值,f[x][1]是以x为根的子树,内部有一条完整的链(选两个内部的子树作 ...
- Luogu P1273 有限电视网【树形Dp/树形背包】
题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点. 从转播站到转播站以及从 ...
随机推荐
- Spring-Security (补充)
一.配置静态资源过滤 直接在xml中配置即可 <!-- 配置静态资源过滤 --> <security:http security="none" pattern=& ...
- 剑指offer——11矩阵覆盖
题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题解: 使用递归或者动态规划,明显,递归没有动态规划优 ...
- 29-Ubuntu-远程管理命令-03-SSH工作方式简介
在Linux中SSH是非常重要的工具,通过SSH客户端可以连接到运行了SSH服务器的远程机器上. 1.SSH客户端是一种使用Secure Shell(SSH)协议连接到远程计算机的软件程序. 2.SS ...
- 27-Ubuntu-远程管理命令-01-关机和重启
关机和重启--shutdown 注: 不指定选项和参数,默认表示1分钟之后关闭电脑 远程维护服务器时,最好不要关闭系统而应该重启 实例1:立刻关机 shutdown -h now 实例2:未带任何参数 ...
- 【图论】tarjan
刚接触tarjan,tarjan其实更多是用来找强联通分量.我这里呢,是看qsc的视频学的.卿学姐讲的其实很清楚啦. 我这里只是做个整理. low[]:表示能到达这个点的最小编号.[树枝边].啊,其实 ...
- 搭建jeecg-boot项目运行
实验版本: 2.0.2(发布日期:20190708) 项目地址:https://github.com/zhangdaiscott/jeecg-boot 说明文档:http://jeecg-boot.m ...
- Datagrid 的 SelectItem 和 SelectValue 如何区分、DataContext 和 ItemSource 在绑定时该绑哪个?
1.selecteditem.selectedvalue.selectedvaluepath三个属性 场景: class T { public string A { get; set; } publi ...
- HTML_表单标签
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- Tomcat相关知识总结
有关Tomcat的杂货店 一.修改端口号,并以IP访问 1.确保80端口没有程序占用.例如nginx等. 2.vi /tomcat/conf/server.xml 3.找到<Connector ...
- 检测到“RuntimeLibrary”的不匹配项