BDA3 Chapter 1 Probability and inference
1. uncertainty
- aleatoric uncertainty 偶然不确定性
- epistemic uncertainty 认知不确定性
Pr(data|distribution); L(distribution|data);
The likelihood function is unnormalized probability distribution describing uncertainty related to \tita;
3. posterior distribution p(\tita|y)
mean: the posterior expectation of parameter.
variation;
median; 中位数
quantiles;
mode: the single 'most likely' value. 众数
4.
Supplementary knowledge:
1. 数学用语:
interval: 区间;
population: 总体;population parameter, 总体参数;
BDA3 Chapter 1 Probability and inference的更多相关文章
- PRML Chapter 2. Probability Distributions
PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...
- 伯努利分布、二项分布、Beta分布、多项分布和Dirichlet分布与他们之间的关系,以及在LDA中的应用
在看LDA的时候,遇到的数学公式分布有些多,因此在这里总结一下思路. 一.伯努利试验.伯努利过程与伯努利分布 先说一下什么是伯努利试验: 维基百科伯努利试验中: 伯努利试验(Bernoulli tri ...
- 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution
PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...
- PRML读书笔记——2 Probability Distributions
2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...
- Targeted Learning R Packages for Causal Inference and Machine Learning(转)
Targeted learning methods build machine-learning-based estimators of parameters defined as features ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...
- 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution
PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...
- 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution
PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...
- 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution
PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...
随机推荐
- Python3(三) 变量与运算符
一.什么是变量 变量 = [1,2] 二.变量的命名规则 字母,数字,下划线,首字母不能是数字 系统关键字 不能用在变量名中 保留关键字 区别大小写 a=1, a='1', a=(1,2), ...
- qt creator源码全方面分析(2-10-5)
目录 The Plugin Manager, the Object Pool, and Registered Objects 插件管理器 对象池和已注册对象 The Plugin Manager, t ...
- CentOS7时区和时间设置
[root@saltstack-master ~]# timedatectl set-timezone Asia/Shanghai [root@saltstack-master ~]# ln -sf ...
- 杭电-------2098 分拆素数和(c语言写)
#include<stdio.h> #include<math.h> ] = { , }; ;//全局变量,用来标志此时已有多少个素数 int judge(int n) {// ...
- 部署LAMP环境搭建一个网站论坛平台
修改主机名 Hostname openstack-001 Hostname Login 修改本地域名解析 Vi /etc/hosts 最后一行添加 192.168.1.56 openstack-001 ...
- CentOS6.5安装指定的PHP版本(php5.5)(转)
查询是否安装有php #rpm -qa|grep php 删除之前安装的php版本 (yum install 安装) #rpm -e php-fpm-5.3.3-47.el6.x86_64 --nod ...
- Error serializing object:序列化对象时出错
序列化对象时出错 :Error serializing object. Error serializing object. Cause: java.io.NotSerializableExceptio ...
- jdk升级后Eclipse无法启动问题
overview: 今日安装jdk11,设置好环境变量后,eclipse无法运行,由于项目依赖原因,不想更新eclipse的版本. 我的jdk是1.8,在将环境变量设回1.8后依然无法运行.在多次尝试 ...
- gRPC用法
官方文档 前置技能 protobuf 什么是 gRPC? A high performance, open-source universal RPC framework RPC : Remote Pr ...
- LeetCode 面试题 02.03. 删除中间节点
题目链接:https://leetcode-cn.com/problems/delete-middle-node-lcci/ 实现一种算法,删除单向链表中间的某个节点(除了第一个和最后一个节点,不一定 ...