P6070 [RC-02] GCD [杜教筛,莫比乌斯反演]
没啥好说的,杜教筛板子题。
\]
容易发现,我们枚举 \(j\) 其实是相当于枚举 \(\gcd\)
才不是枚举题目
然后式子可以变成
\]
然后套路式的枚举 \(gcd\) 依旧不是枚举题目
\]
熟悉的形式,其实就等于
\]
\]
然后整除分块就完了,由于 \(N\) 比较大,大力杜教筛就完事了,话说我好像是这题除掉出题人的最优解
// powered by c++11
// by Isaunoya
#include<bits/stdc++.h>
#define rep(i , x , y) for(register int i = (x) ; i <= (y) ; ++ i)
#define Rep(i , x , y) for(register int i = (x) ; i >= (y) ; -- i)
using namespace std ;
using db = double ;
using ll = long long ;
using uint = unsigned int ;
#define int long long
using pii = pair < int , int > ;
#define ve vector
#define Tp template
#define all(v) v.begin() , v.end()
#define sz(v) ((int)v.size())
#define pb emplace_back
#define fir first
#define sec second
// the cmin && cmax
Tp < class T > void cmax(T & x , const T & y) { if(x < y) x = y ; }
Tp < class T > void cmin(T & x , const T & y) { if(x > y) x = y ; }
// sort , unique , reverse
Tp < class T > void sort(ve < T > & v) { sort(all(v)) ; }
Tp < class T > void unique(ve < T > & v) { sort(all(v)) ; v.erase(unique(all(v)) , v.end()) ; }
Tp < class T > void reverse(ve < T > & v) { reverse(all(v)) ; }
const int SZ = 0x191981 ;
struct FILEIN {
~ FILEIN () {} char qwq[SZ] , * S = qwq , * T = qwq , ch ;
char GETC() { return (S == T) && (T = (S = qwq) + fread(qwq , 1 , SZ , stdin) , S == T) ? EOF : * S ++ ; }
FILEIN & operator >> (char & c) { while(isspace(c = GETC())) ; return * this ; }
FILEIN & operator >> (string & s) {
while(isspace(ch = GETC())) ; s = ch ;
while(! isspace(ch = GETC())) s += ch ; return * this ;
}
Tp < class T > void read(T & x) {
bool sign = 1 ; while((ch = GETC()) < 0x30) if(ch == 0x2d) sign = 0 ;
x = (ch ^ 0x30) ; while((ch = GETC()) > 0x2f) x = x * 0xa + (ch ^ 0x30) ;
x = sign ? x : -x ;
}
FILEIN & operator >> (int & x) { return read(x) , * this ; }
FILEIN & operator >> (signed & x) { return read(x) , * this ; }
FILEIN & operator >> (unsigned & x) { return read(x) , * this ; }
} in ;
struct FILEOUT { const static int LIMIT = 0x114514 ;
char quq[SZ] , ST[0x114] ; signed sz , O ;
~ FILEOUT () { sz = O = 0 ; }
void flush() { fwrite(quq , 1 , O , stdout) ; fflush(stdout) ; O = 0 ; }
FILEOUT & operator << (char c) { return quq[O ++] = c , * this ; }
FILEOUT & operator << (string str) {
if(O > LIMIT) flush() ; for(char c : str) quq[O ++] = c ; return * this ;
}
Tp < class T > void write(T x) {
if(O > LIMIT) flush() ; if(x < 0) { quq[O ++] = 0x2d ; x = -x ; }
do { ST[++ sz] = x % 0xa ^ 0x30 ; x /= 0xa ; } while(x) ;
while(sz) quq[O ++] = ST[sz --] ; return ;
}
FILEOUT & operator << (int x) { return write(x) , * this ; }
FILEOUT & operator << (signed x) { return write(x) , * this ; }
FILEOUT & operator << (unsigned x) { return write(x) , * this ; }
} out ;
const int maxn = 5e5 ;
int mu[maxn + 10] ;
const int mod = 998244353 ;
map < int , int > _mu ;
int getmu(int x) {
if(x <= maxn) return mu[x] ;
if(_mu[x]) return _mu[x] ;
int ans = 1 ;
int l = 2 , r = 0 ;
for( ; l <= x ; l = r + 1) {
r = x / (x / l) ;
ans -= getmu(x / l) * (r - l + 1) ;
ans = (ans + mod) % mod ;
}
return _mu[x] = ans ;
}
signed main() {
#ifdef _WIN64
freopen("testdata.in" , "r" , stdin) ;
#else
ios_base :: sync_with_stdio(false) ;
cin.tie(nullptr) , cout.tie(nullptr) ;
#endif
// code begin.
mu[1] = 1 ;
for(int i = 1 ; i <= maxn ; i ++)
for(int j = i + i ; j <= maxn ; j += i)
mu[j] -= mu[i] ;
for(int i = 2 ; i <= maxn ; i ++)
mu[i] = (mu[i] + mu[i - 1]) % mod ;
int n ;
in >> n ;
int l = 1 , r = 0 ;
int ans = 0 ;
for( ; l <= n ; l = r + 1) {
r = n / (n / l) ;
int qwq = (n / l) * (n / l) % mod * (n / l) % mod ;
ans = (ans + (getmu(r) - getmu(l - 1) + mod) % mod * qwq % mod) % mod ;
}
out << ans << '\n' ;
return out.flush() , 0 ;
// code end.
}
P6070 [RC-02] GCD [杜教筛,莫比乌斯反演]的更多相关文章
- BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演
BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求 ...
- 【XSY2731】Div 数论 杜教筛 莫比乌斯反演
题目大意 定义复数\(a+bi\)为整数\(k\)的约数,当且仅当\(a\)和\(b\)为整数且存在整数\(c\)和\(d\)满足\((a+bi)(c+di)=k\). 定义复数\(a+bi\)的实部 ...
- [CQOI2015][bzoj3930] 选数 [杜教筛+莫比乌斯反演]
题面: 传送门 思路: 首先我们把区间缩小到$\left[\lfloor\frac{L-1}{K}\rfloor,\lfloor\frac{R}{K}\rfloor\right]$ 这道题的最特殊的点 ...
- [51Nod 1237] 最大公约数之和 (杜教筛+莫比乌斯反演)
题目描述 求∑i=1n∑j=1n(i,j) mod (1e9+7)n<=1010\sum_{i=1}^n\sum_{j=1}^n(i,j)~mod~(1e9+7)\\n<=10^{10}i ...
- [bzoj 4176] Lucas的数论 (杜教筛 + 莫比乌斯反演)
题面 设d(x)d(x)d(x)为xxx的约数个数,给定NNN,求 ∑i=1N∑j=1Nd(ij)\sum^{N}_{i=1}\sum^{N}_{j=1} d(ij)i=1∑Nj=1∑Nd(ij) ...
- bzoj 4916: 神犇和蒟蒻 (杜教筛+莫比乌斯反演)
题目大意: 读入n. 第一行输出“1”(不带引号). 第二行输出$\sum_{i=1}^n i\phi(i)$. 题解: 所以说那个$\sum\mu$是在开玩笑么=.= 设$f(n)=n\phi(n) ...
- [51nod1220] 约数之和(杜教筛+莫比乌斯反演)
题面 传送门 题解 嗯--还是懒得写了--这里 //minamoto #include<bits/stdc++.h> #define R register #define IT map&l ...
- LOJ 6229 LCM / GCD (杜教筛+Moebius)
链接: https://loj.ac/problem/6229 题意: \[F(n)=\sum_{i=1}^n\sum_{j=1}^i\frac{\mathrm{lcm}(i,j)}{\mathrm{ ...
- 【BZOJ4176】Lucas的数论-杜教筛
求$$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}f(ij)$$,其中$f(x)$表示$x$的约数个数,$0\leq n\leq 10^9$,答案膜$10^9+ ...
随机推荐
- 【WPF学习】第四十五章 可视化对象
前面几章介绍了处理适量适中的图形内容的最佳方法.通过使用几何图形.图画和路径,可以降低2D图形的开销.即使正在使用复杂的具有分层效果的组合形状和渐变画刷,这种方法也仍然能够正常得很好. 然而,这样设计 ...
- Docker的基本使用与简介
1 Docker简介 1.1 什么是虚拟化 在计算机中,虚拟化(英语:Virtualization)是一种资源管理技术,是将计算机的各种实体资源,如服务器.网络.内存及存储等,予以抽象.转换后呈现出来 ...
- WampServer 更换 mysql
下载另外版本的mysql,复制到 wamp/bin,初始化号 修改wamp 的/wampmanager.conf 复制相关配置文件 [mysqloptions] mysqlPortUsed = &qu ...
- centos7 上为php-fpm安装gd扩展库
转自:https://blog.csdn.net/liyyzz33/article/details/89166110 首先查看自己当前php的版本 php -v PHP 5.6.40 查看yum中是否 ...
- [redis读书笔记] 第二部分 集群
1. 一个集群会包含多个节点(一个节点就是一个reid是服务器),CLUST MEET <ip><port>可以添加一个node到集群,命令执行后,两个node之间就会进行握手 ...
- zabbix 自定义监控项每隔1分钟检测一次三次失败报警
在agent上添加 UserParameter=auth.check,/etc/zabbix/auth_monitor/auth_check.py auth.check就是之后添加的自定义的item值 ...
- localStorage 存储
localStorage 的优势 localStorage 拓展了 cookie 的 4K 限制. localStorage 会可以将第一次请求的数据直接存储到本地,这个相当于一个 5M 大小的针对于 ...
- Centos7 使用Docker 部署mssql 2017
mssql是.NET的标配,一般使用.NET的人基本都用mssql. 以前mssql只能支持windows平台,从微软打出 拥抱开源 的口号开始,mssql的2017 版本,开始支持linux系统. ...
- [红日安全]Web安全Day1 - SQL注入实战攻防
本文由红日安全成员: Aixic 编写,如有不当,还望斧正. 大家好,我们是红日安全-Web安全攻防小组.此项目是关于Web安全的系列文章分享,还包含一个HTB靶场供大家练习,我们给这个项目起了一个名 ...
- 全面解析百度大脑发布“AI开发者‘战疫’守护计划”
即日起,百度大脑发布“AI开发者战疫守护计划” 大疫当前,人人有责,携手开发者共同出击抗击疫情 基于百度大脑AI开放平台和飞桨深度学习平台,积极运用算法.算力.软件等“武器”助力抗疫! 谁能参与计 ...