代码:

    def forward(self, x):
        '''
        根据式1-式6进行前向计算
        '''
        self.times += 1
        # 遗忘门
        fg = self.calc_gate(x, self.Wfx, self.Wfh,
                            self.bf, self.gate_activator)
        self.f_list.append(fg)
        # 输入门
        ig = self.calc_gate(x, self.Wix, self.Wih,
                            self.bi, self.gate_activator)
        self.i_list.append(ig)
        # 输出门
        og = self.calc_gate(x, self.Wox, self.Woh,
                            self.bo, self.gate_activator)
        self.o_list.append(og)
        # 即时状态
        ct = self.calc_gate(x, self.Wcx, self.Wch,
                            self.bc, self.output_activator)
        self.ct_list.append(ct)
        # 单元状态
        c = fg * self.c_list[self.times - 1] + ig * ct
        self.c_list.append(c)
        # 输出
        h = og * self.output_activator.forward(c)
        self.h_list.append(h)

    def calc_gate(self, x, Wx, Wh, b, activator):
        '''
        计算门
        '''
        h = self.h_list[self.times - 1]  # 上次的LSTM输出
        net = np.dot(Wh, h) + np.dot(Wx, x) + b
        gate = activator.forward(net)
        return gate

    def calc_delta_k(self, k):
        '''
        根据k时刻的delta_h,计算k时刻的delta_f、
        delta_i、delta_o、delta_ct,以及k-1时刻的delta_h
        '''
        # 获得k时刻前向计算的值
        ig = self.i_list[k]
        og = self.o_list[k]
        fg = self.f_list[k]
        ct = self.ct_list[k]
        c = self.c_list[k]
        c_prev = self.c_list[k - 1]
        tanh_c = self.output_activator.forward(c)
        delta_k = self.delta_h_list[k]

        # 根据式9计算delta_o
        delta_o = (delta_k * tanh_c *
                   self.gate_activator.backward(og))
        delta_f = (delta_k * og *
                   (1 - tanh_c * tanh_c) * c_prev *
                   self.gate_activator.backward(fg))
        delta_i = (delta_k * og *
                   (1 - tanh_c * tanh_c) * ct *
                   self.gate_activator.backward(ig))
        delta_ct = (delta_k * og *
                    (1 - tanh_c * tanh_c) * ig *
                    self.output_activator.backward(ct))
        delta_h_prev = (
                np.dot(delta_o.transpose(), self.Woh) +
                np.dot(delta_i.transpose(), self.Wih) +
                np.dot(delta_f.transpose(), self.Wfh) +
                np.dot(delta_ct.transpose(), self.Wch)
        ).transpose()

        # 保存全部delta值
        self.delta_h_list[k - 1] = delta_h_prev
        self.delta_f_list[k] = delta_f
        self.delta_i_list[k] = delta_i
        self.delta_o_list[k] = delta_o
        self.delta_ct_list[k] = delta_ct

    def calc_gradient_t(self, t):
        '''
        计算每个时刻t权重的梯度
        '''
        h_prev = self.h_list[t - 1].transpose()
        Wfh_grad = np.dot(self.delta_f_list[t], h_prev)
        bf_grad = self.delta_f_list[t]
        Wih_grad = np.dot(self.delta_i_list[t], h_prev)
        bi_grad = self.delta_f_list[t]
        Woh_grad = np.dot(self.delta_o_list[t], h_prev)
        bo_grad = self.delta_f_list[t]
        Wch_grad = np.dot(self.delta_ct_list[t], h_prev)
        bc_grad = self.delta_ct_list[t]
        return Wfh_grad, bf_grad, Wih_grad, bi_grad, \
               Woh_grad, bo_grad, Wch_grad, bc_grad

    def calc_gradient(self, x):
        # 初始化遗忘门权重梯度矩阵和偏置项
        self.Wfh_grad, self.Wfx_grad, self.bf_grad = (
            self.init_weight_gradient_mat())
        # 初始化输入门权重梯度矩阵和偏置项
        self.Wih_grad, self.Wix_grad, self.bi_grad = (
            self.init_weight_gradient_mat())
        # 初始化输出门权重梯度矩阵和偏置项
        self.Woh_grad, self.Wox_grad, self.bo_grad = (
            self.init_weight_gradient_mat())
        # 初始化单元状态权重梯度矩阵和偏置项
        self.Wch_grad, self.Wcx_grad, self.bc_grad = (
            self.init_weight_gradient_mat())

        # 计算对上一次输出h的权重梯度
        for t in range(self.times, 0, -1):
            # 计算各个时刻的梯度
            (Wfh_grad, bf_grad,
             Wih_grad, bi_grad,
             Woh_grad, bo_grad,
             Wch_grad, bc_grad) = (
                self.calc_gradient_t(t))
            # 实际梯度是各时刻梯度之和
            self.Wfh_grad += Wfh_grad
            self.bf_grad += bf_grad
            self.Wih_grad += Wih_grad
            self.bi_grad += bi_grad
            self.Woh_grad += Woh_grad
            self.bo_grad += bo_grad
            self.Wch_grad += Wch_grad
            self.bc_grad += bc_grad

        # 计算对本次输入x的权重梯度
        xt = x.transpose()
        self.Wfx_grad = np.dot(self.delta_f_list[-1], xt)
        self.Wix_grad = np.dot(self.delta_i_list[-1], xt)
        self.Wox_grad = np.dot(self.delta_o_list[-1], xt)
        self.Wcx_grad = np.dot(self.delta_ct_list[-1], xt)

参考:

https://zybuluo.com/hanbingtao/note/581764

https://www.cnblogs.com/ratels/p/11416515.html

零基础入门深度学习(6) - 长短时记忆网络(LSTM)的更多相关文章

  1. (转)零基础入门深度学习(6) - 长短时记忆网络(LSTM)

    无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就o ...

  2. C#区块链零基础入门,学习路线图 转

    C#区块链零基础入门,学习路线图 一.1分钟短视频<区块链100问>了解区块链基本概念 http://tech.sina.com.cn/zt_d/blockchain_100/ 二.C#区 ...

  3. 长短时记忆网络(LSTM)

    长短时记忆网络 循环神经网络很难训练的原因导致它的实际应用中很处理长距离的依赖.本文将介绍改进后的循环神经网络:长短时记忆网络(Long Short Term Memory Network, LSTM ...

  4. 【零基础学深度学习】动手学深度学习2.0--tensorboard可视化工具简单使用

    1 引言 老师让我将线性回归训练得出的loss值进行可视化,于是我使用了tensorboard将其应用到Pytorch中,用于Pytorch的可视化. 2 环境安装 本教程代码环境依赖: python ...

  5. 长短时记忆网络LSTM和条件随机场crf

    LSTM 原理 CRF 原理 给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型.假设输出随机变量构成马尔科夫随机场(概率无向图模型)在标注问题应用中,简化成线性链条件随机场,对数线性判别 ...

  6. 机器学习与Tensorflow(5)——循环神经网络、长短时记忆网络

    1.循环神经网络的标准模型 前馈神经网络能够用来建立数据之间的映射关系,但是不能用来分析过去信号的时间依赖关系,而且要求输入样本的长度固定 循环神经网络是一种在前馈神经网络中增加了分亏链接的神经网络, ...

  7. 函数:我的地盘听我的 - 零基础入门学习Python019

    函数:我的地盘听我的 让编程改变世界 Change the world by program 函数与过程 在小甲鱼另一个实践性超强的编程视频教学<零基础入门学习Delphi>中,我们谈到了 ...

  8. 【Python教程】《零基础入门学习Python》(小甲鱼)

    [Python教程]<零基础入门学习Python>(小甲鱼) 讲解通俗易懂,诙谐. 哈哈哈. https://www.bilibili.com/video/av27789609

  9. 《零基础入门学习Python》【第一版】视频课后答案第001讲

    测试题答案: 0. Python 是什么类型的语言? Python是脚本语言 脚本语言(Scripting language)是电脑编程语言,因此也能让开发者藉以编写出让电脑听命行事的程序.以简单的方 ...

随机推荐

  1. 使用VS2017开发安卓app(2)新建项目

    安装完成后,在c#下找到Android,选择Android应用(Xamarin),修改项目名称和路径,新建第一个安卓项目! 点击确定后会出现 这里我们选择空白应用和Android 7.1. 创建新项目 ...

  2. doGet与doPost简单理解

    get和post是http协议的两种方法 这两种方法有着本质的区别,get只有一个流,参数附加在url后,大小个数有严格限制且只能是字符串.Post的参数是通过另外的流传递,不通过url,所以可以很大 ...

  3. python-PIL-16bit-灰度图像生成-tiff

    import numpy from PIL import Image a=numpy.array(numpy.uint16([[12,23,34],[123,213,22]])) im=Image.f ...

  4. MySql 怎么存取 Emoji

    01.前言 Emoji 在我们生活中真的是越来越常见了,几乎每次发消息的时候不带个 Emoji,总觉得少了点什么,似乎干巴巴的文字已经无法承载我们丰富的感情了.对于我们开发者来说,如何将 Emoji ...

  5. es7实现数学乘方

    //math.pow简写方法 console.log(2 ** 6)

  6. layui与jQuery一起使用

    1,先导入jquery <script type="text/javascript" src="https://cdn.bootcss.com/jquery/3.2 ...

  7. AcWing 840. 模拟散列表

    拉链法 #include<cstring> #include<iostream> using namespace std ; ; int h[N],e[N],ne[N],idx ...

  8. Go第三方库之tail

    Tail Demo // tail.TailFile()函数开启goroutine去读取文件,通过channel格式的t.lines传递内容. t, err := tail.TailFile(&quo ...

  9. Jmeter注册100个账户的三个方法

    Jmeter注册账户比如注册成千上万个账户,如何快速实现呢? 三种方法分别举例注册5个账户 1)添加CSV data config_txt 2)添加CSV data config_csv 3)函数助手 ...

  10. 《爬虫学习》(一)(HTTP协议)

    Http请求: 1.在浏览器中发送一个http请求的过程: 2.url详解: URL是Uniform Resource Locator的简写,统一资源定位符. 一个URL由以下几部分组成 scheme ...