零基础入门深度学习(6) - 长短时记忆网络(LSTM)
代码:
def forward(self, x): ''' 根据式1-式6进行前向计算 ''' self.times += 1 # 遗忘门 fg = self.calc_gate(x, self.Wfx, self.Wfh, self.bf, self.gate_activator) self.f_list.append(fg) # 输入门 ig = self.calc_gate(x, self.Wix, self.Wih, self.bi, self.gate_activator) self.i_list.append(ig) # 输出门 og = self.calc_gate(x, self.Wox, self.Woh, self.bo, self.gate_activator) self.o_list.append(og) # 即时状态 ct = self.calc_gate(x, self.Wcx, self.Wch, self.bc, self.output_activator) self.ct_list.append(ct) # 单元状态 c = fg * self.c_list[self.times - 1] + ig * ct self.c_list.append(c) # 输出 h = og * self.output_activator.forward(c) self.h_list.append(h) def calc_gate(self, x, Wx, Wh, b, activator): ''' 计算门 ''' h = self.h_list[self.times - 1] # 上次的LSTM输出 net = np.dot(Wh, h) + np.dot(Wx, x) + b gate = activator.forward(net) return gate
def calc_delta_k(self, k): ''' 根据k时刻的delta_h,计算k时刻的delta_f、 delta_i、delta_o、delta_ct,以及k-1时刻的delta_h ''' # 获得k时刻前向计算的值 ig = self.i_list[k] og = self.o_list[k] fg = self.f_list[k] ct = self.ct_list[k] c = self.c_list[k] c_prev = self.c_list[k - 1] tanh_c = self.output_activator.forward(c) delta_k = self.delta_h_list[k] # 根据式9计算delta_o delta_o = (delta_k * tanh_c * self.gate_activator.backward(og)) delta_f = (delta_k * og * (1 - tanh_c * tanh_c) * c_prev * self.gate_activator.backward(fg)) delta_i = (delta_k * og * (1 - tanh_c * tanh_c) * ct * self.gate_activator.backward(ig)) delta_ct = (delta_k * og * (1 - tanh_c * tanh_c) * ig * self.output_activator.backward(ct)) delta_h_prev = ( np.dot(delta_o.transpose(), self.Woh) + np.dot(delta_i.transpose(), self.Wih) + np.dot(delta_f.transpose(), self.Wfh) + np.dot(delta_ct.transpose(), self.Wch) ).transpose() # 保存全部delta值 self.delta_h_list[k - 1] = delta_h_prev self.delta_f_list[k] = delta_f self.delta_i_list[k] = delta_i self.delta_o_list[k] = delta_o self.delta_ct_list[k] = delta_ct
def calc_gradient_t(self, t): ''' 计算每个时刻t权重的梯度 ''' h_prev = self.h_list[t - 1].transpose() Wfh_grad = np.dot(self.delta_f_list[t], h_prev) bf_grad = self.delta_f_list[t] Wih_grad = np.dot(self.delta_i_list[t], h_prev) bi_grad = self.delta_f_list[t] Woh_grad = np.dot(self.delta_o_list[t], h_prev) bo_grad = self.delta_f_list[t] Wch_grad = np.dot(self.delta_ct_list[t], h_prev) bc_grad = self.delta_ct_list[t] return Wfh_grad, bf_grad, Wih_grad, bi_grad, \ Woh_grad, bo_grad, Wch_grad, bc_grad
def calc_gradient(self, x): # 初始化遗忘门权重梯度矩阵和偏置项 self.Wfh_grad, self.Wfx_grad, self.bf_grad = ( self.init_weight_gradient_mat()) # 初始化输入门权重梯度矩阵和偏置项 self.Wih_grad, self.Wix_grad, self.bi_grad = ( self.init_weight_gradient_mat()) # 初始化输出门权重梯度矩阵和偏置项 self.Woh_grad, self.Wox_grad, self.bo_grad = ( self.init_weight_gradient_mat()) # 初始化单元状态权重梯度矩阵和偏置项 self.Wch_grad, self.Wcx_grad, self.bc_grad = ( self.init_weight_gradient_mat()) # 计算对上一次输出h的权重梯度 for t in range(self.times, 0, -1): # 计算各个时刻的梯度 (Wfh_grad, bf_grad, Wih_grad, bi_grad, Woh_grad, bo_grad, Wch_grad, bc_grad) = ( self.calc_gradient_t(t)) # 实际梯度是各时刻梯度之和 self.Wfh_grad += Wfh_grad self.bf_grad += bf_grad self.Wih_grad += Wih_grad self.bi_grad += bi_grad self.Woh_grad += Woh_grad self.bo_grad += bo_grad self.Wch_grad += Wch_grad self.bc_grad += bc_grad # 计算对本次输入x的权重梯度 xt = x.transpose() self.Wfx_grad = np.dot(self.delta_f_list[-1], xt) self.Wix_grad = np.dot(self.delta_i_list[-1], xt) self.Wox_grad = np.dot(self.delta_o_list[-1], xt) self.Wcx_grad = np.dot(self.delta_ct_list[-1], xt)
参考:
https://zybuluo.com/hanbingtao/note/581764
https://www.cnblogs.com/ratels/p/11416515.html
零基础入门深度学习(6) - 长短时记忆网络(LSTM)的更多相关文章
- (转)零基础入门深度学习(6) - 长短时记忆网络(LSTM)
无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就o ...
- C#区块链零基础入门,学习路线图 转
C#区块链零基础入门,学习路线图 一.1分钟短视频<区块链100问>了解区块链基本概念 http://tech.sina.com.cn/zt_d/blockchain_100/ 二.C#区 ...
- 长短时记忆网络(LSTM)
长短时记忆网络 循环神经网络很难训练的原因导致它的实际应用中很处理长距离的依赖.本文将介绍改进后的循环神经网络:长短时记忆网络(Long Short Term Memory Network, LSTM ...
- 【零基础学深度学习】动手学深度学习2.0--tensorboard可视化工具简单使用
1 引言 老师让我将线性回归训练得出的loss值进行可视化,于是我使用了tensorboard将其应用到Pytorch中,用于Pytorch的可视化. 2 环境安装 本教程代码环境依赖: python ...
- 长短时记忆网络LSTM和条件随机场crf
LSTM 原理 CRF 原理 给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型.假设输出随机变量构成马尔科夫随机场(概率无向图模型)在标注问题应用中,简化成线性链条件随机场,对数线性判别 ...
- 机器学习与Tensorflow(5)——循环神经网络、长短时记忆网络
1.循环神经网络的标准模型 前馈神经网络能够用来建立数据之间的映射关系,但是不能用来分析过去信号的时间依赖关系,而且要求输入样本的长度固定 循环神经网络是一种在前馈神经网络中增加了分亏链接的神经网络, ...
- 函数:我的地盘听我的 - 零基础入门学习Python019
函数:我的地盘听我的 让编程改变世界 Change the world by program 函数与过程 在小甲鱼另一个实践性超强的编程视频教学<零基础入门学习Delphi>中,我们谈到了 ...
- 【Python教程】《零基础入门学习Python》(小甲鱼)
[Python教程]<零基础入门学习Python>(小甲鱼) 讲解通俗易懂,诙谐. 哈哈哈. https://www.bilibili.com/video/av27789609
- 《零基础入门学习Python》【第一版】视频课后答案第001讲
测试题答案: 0. Python 是什么类型的语言? Python是脚本语言 脚本语言(Scripting language)是电脑编程语言,因此也能让开发者藉以编写出让电脑听命行事的程序.以简单的方 ...
随机推荐
- 微信小程序 scroll-view 左右横向滑动没有效果(无法滑动)问题
小程序组件 scroll-view 中分别有上下竖向滑动和左右横向滑动之分,在这次项目中刚好需要用到横向滑动,但在测试过程中发现横向滑动没有了效果(静止在那里没移动过),经调试发现: 1.scroll ...
- 扩展欧几里得求解同余方程(poj 1061)
设方程 ax + by = c , 若 gcd(a,b) 是 c的因子(记作gcd(a,b)|c)则方程有解,反之无解. 其中x0,y0是方程的一组特解 , d = gcd(a,b), poj1061 ...
- 对C#面向对象三大特性的一点总结
一.三大特性 封装: 把客观事物封装成类,并把类内部的实现隐藏,以保证数据的完整性 继承:通过继承可以复用父类的代码 多态:允许将子对象赋值给父对象的一种能力 二.[封装]特性 把类内部的数据隐藏,不 ...
- 【一句话解释】docker and vm
效果 在一个host上面运行多个os,达到快速部署以及充分利用资源的额目的 vm 虚拟机,会模拟一个完整的操作系统堆栈出来. 缺点开销大,优点,guest os 是一个完整的操作系统 根据hyperv ...
- FreeRTOS学习笔记3:内核控制及开启调度器
内核控制函数API 应用层中不会用到taskYIELD() //任务切换.会自动切换当前就绪表里优先级最高的任务 临界区 //不能被打断的代码段任务中进入临界区任务中退出临界区中断服务进入临界区中断服 ...
- 计算几何-HPI
This article is made by Jason-Cow.Welcome to reprint.But please post the article's address. 在线笛卡尔坐 ...
- rabbitmq - 简单认识
1. 概述 与 rabbitmq 做交互 amqp 最著名的实现 与 jms 最明显的区别 消息 不是去找 queue 而是去找 exchange 2. rabbitmq 基本组件 sender 发送 ...
- 谷歌play上APK的下载
https://apkcombo.com/tw-hk/ 在google搜索 APK DOWNLAOD就有专门下载谷歌PLAY的APK的
- 避坑之Hadoop安装伪分布式(Hadoop3.2.0/Ubuntu14.04 64位)
一.安装JDK环境(这个可以网上随意搜一篇教程了照着弄,这里不赘述) 安装成功之后 输入 输入:java -version 显示如下说明jdk安装成功(我这里是安装JDK8) 二.安装Hadoop3. ...
- Eclipse安装配置java项目
设置智能提示