\[\Large\int_{0}^{z}x^{t}\ln\Gamma \left ( 1+x \right )\mathrm{d}x~,~z>0\, ,\, t\in N^{*}\]


\(\Large\mathbf{Solution:}\)
Notice that
\[\begin{align*}
\int_{0}^{z}x^{t}\ln\Gamma \left ( 1+x \right )\mathrm{d}x&=\int_{0}^{z}x^{t}\ln\Big[ x\Gamma \left ( x \right ) \Big]\mathrm{d}x=\int_{0}^{z}x^{t}\ln x\mathrm{d}x+\int_{0}^{z}x^{t}\ln\Gamma \left ( x \right )\mathrm{d}x\\
&=\frac{z^{1+t}\Big[\left ( 1+t \right )\ln z-1\Big]}{\left ( 1+t \right )^{2}}+\int_{0}^{z}x^{t}\ln\Gamma \left ( x \right )\mathrm{d}x
\end{align*}\]
Using the Kummer's Fourier Series of \(\displaystyle \ln \Gamma(x)\) and
\[\sum_{n=1}^{\infty }\frac{\cos\left ( 2\pi nx \right )}{2n}=-\frac{1}{2}\ln\left ( 2\sin\pi x \right )~,~\sum_{n=1}^{\infty }\frac{\sin\left ( 2\pi nx \right )}{2n}=\frac{1}{2}-x\]
we have
\[\ln\Gamma \left ( x \right )=\frac{1}{2}\ln2\pi-\frac{1}{2}\ln\left ( 2\sin\pi x \right )+\left ( \gamma +\ln2\pi \right )\left ( \frac{1}{2}-x \right )+\sum_{n=1}^{\infty }\frac{\ln n}{n\pi }\sin\left ( 2\pi nx \right )\]
Hence we have
\[\begin{align*}
\int_{0}^{z}x^{t}\ln\Gamma \left ( x \right )\mathrm{d}x&=\frac{z^{t+1}\ln2\pi }{2\left ( t+1 \right )}+\frac{z^{t+1}\left ( \gamma +\ln2\pi \right )\left ( t-2zt-2z+2 \right )}{2\left ( t+1 \right )\left ( t+2 \right )}\\
&~~~-\frac{1}{2}\int_{0}^{z}x^{t}\ln\left ( 2\sin\pi x \right )\mathrm{d}x+\frac{1}{\pi }\sum_{n=1}^{\infty }\frac{\ln n}{n}\int_{0}^{z}x^{t}\sin\left ( 2\pi nx \right )\mathrm{d}x
\end{align*}\]
where
\[\begin{align*}
\int_{0}^{z}x^{t}\ln\left ( 2\sin\pi x \right )\mathrm{d}x&=\frac{1}{\left ( 2\pi \right )^{t+1}}\int_{0}^{2\pi z}x^{t}\ln\left ( 2\sin\frac{x}{2} \right )\mathrm{d}x\\
&=-\frac{x^{t}}{\left ( 2\pi \right )^{t+1}}\mathrm{Cl}_{2}\left ( x \right )\Bigg|_{0}^{2\pi z}+\frac{t}{\left ( 2\pi \right )^{t+1}}\int_{0}^{2\pi z} x^{t-1}\mathrm{Cl}_{2}\left ( x \right )\mathrm{d}x\\
&=-\left ( \frac{z}{2\pi } \right )^{t}\mathrm{Cl}_{2}\left ( 2\pi z \right )+\frac{t}{\left ( 2\pi \right )^{t+1}}\int_{0}^{2\pi z}x^{t-1}\sum_{k=1}^{\infty }\frac{\sin kx}{k^{2}}\mathrm{d}x\\
&=-\left ( \frac{z}{2\pi } \right )^{t}\mathrm{Cl}_{2}\left ( 2\pi z \right )+\frac{t}{\left ( 2\pi \right )^{t+1}}\sum_{k=1}^{\infty }\frac{1}{k^{2}}\int_{0}^{2\pi z}x^{t-1}\sin kx\mathrm{d}x
\end{align*}\]
for the last integral,it's not hard to see that
\[\begin{align*}
\int_0^{2\pi z}x^{t-1}\sin kx\,\mathrm{d}x&=\left ( t-1 \right )!\,\Bigg[~\sum_{j=0}^{\lfloor {t-1/2} \rfloor}(-1)^{j+1}\frac{x^{t-1-2j}}{k^{2j+1}(t-1-2j)!}\cos kx \,\Bigg|_0^{2\pi z}\\
&~~~+\sum_{j=0}^{\lfloor {(t-2)2} \rfloor}(-1)^{j+1}\frac{x^{t-2j-2}}{k^{2j+2}(t-2j-2)!}\sin kx\,\Bigg|_0^{2\pi z}~\Bigg]
\end{align*}\]
let \(t-1=t\) and \(k=2\pi n\) we can evaluate \(\displaystyle \int_{0}^{z}x^{t}\sin\left ( 2\pi nx \right )\mathrm{d}x\) .
Now we obtain the result for the initial integral
\[\boxed{\begin{align*}
&\int_{0}^{z}x^{t}\ln\Gamma \left ( 1+x \right )\mathrm{d}x=\\
&\color{blue}{\frac{z^{1+t}\left[\left ( 1+t \right )\ln z-1\right]}{\left ( 1+t \right )^{2}}+\frac{z^{t+1}\ln2\pi }{2\left ( t+1 \right )}+\frac{z^{t+1}\left ( \gamma +\ln2\pi \right )\left ( t-2zt-2z+2 \right )}{2\left ( t+1 \right )\left ( t+2 \right )}}\\
&\color{blue}{+\frac{1}{2}\left ( \frac{z}{2\pi } \right )^{t}\mathrm{Cl}_{2}\left ( 2\pi z \right )-\frac{t\left ( t-1 \right )!}{2\left ( 2\pi \right )^{t+1}}\sum_{k=1}^{\infty }\frac{1}{k^{2}}\Bigg \{\sum_{j=0}^{\lfloor {t-1/2} \rfloor}\frac{(-1)^{j+1}x^{t-1-2j}}{k^{2j+1}(t-1-2j)!}\cos kx \,\Bigg|_0^{2\pi z}}\\
&\color{blue}{+\sum_{j=0}^{\lfloor {(t-2)2} \rfloor}\frac{(-1)^{j+1}x^{t-2j-2}}{k^{2j+2}(t-2j-2)!}\sin kx\,\Bigg|_0^{2\pi z} \Bigg \}+\frac{t!}{\pi }\sum_{n=1}^{\infty }\frac{\ln n}{n}\Bigg \{ \sum_{j=0}^{\lfloor {t/2} \rfloor}\frac{(-1)^{j+1}x^{t-2j}}{\left ( 2\pi n \right )^{2j+1}(t-2j)!}\cos\left ( 2\pi nx \right ) \,\Biggr|_0^{z}}\\
&\color{blue}{+\sum_{j=0}^{\lfloor {(t-1)2} \rfloor}\frac{(-1)^{j+1}x^{t-2j-1}}{\left ( 2\pi n \right )^{2j+2}(t-2j-1)!}\sin \left ( 2\pi nx \right )\,\Biggr|_0^{z} \Bigg\}}
\end{align*}}\]


\(\mathrm{For~example:}\)
\[\color{red}{\int_{0}^{1}x\ln\Gamma \left ( 1+x \right )\mathrm{d}x=\ln\left ( \frac{2^{\frac{1}{4}}\pi ^{\frac{1}{4}}}{\mathbf{A}e^{\frac{1}{4}}} \right )}\]
\[\color{red}{\int_{0}^{2}x^{2}\ln\Gamma \left ( 1+x \right )\mathrm{d}x=\frac{4}{3}\ln\left (\frac{8\pi }{\mathbf{A}^{3}} \right )+\frac{\zeta \left ( 3 \right )}{2\pi ^{2}}-\frac{5}{2}}\]
\[\color{red}{\int_{0}^{\frac{1}{2}}x^{2}\ln\Gamma \left ( 1+x \right )\mathrm{d}x=\ln\left ( \frac{\mathbf{A}^{\frac{1}{8}}\pi ^{\frac{1}{48}}}{2^{\frac{89}{2880}}} \right )-\frac{5}{8}\zeta '\left ( 3 \right )-\frac{3\zeta \left ( 3 \right )}{32\pi ^{2}}-\frac{3}{128}}\]

一类Log-Gamma积分的一般形式的更多相关文章

  1. 两个Beta函数类型的积分及其一般形式

    \[\Large\displaystyle \int_{0}^{1}\frac{\sqrt[4]{x\left ( 1-x \right )^{3}}}{\left ( 1+x \right )^{3 ...

  2. LDA-math-神奇的Gamma函数

    http://cos.name/2013/01/lda-math-gamma-function/ 1. 神奇的Gamma函数1.1 Gamma 函数诞生记学高等数学的时候,我们都学习过如下一个长相有点 ...

  3. 各类分布----二项分布,泊松分布,负二项分布,gamma 分布,高斯分布,学生分布,Z分布

    伯努利实验: 如果无穷随机变量序列  是独立同分布(i.i.d.)的,而且每个随机变量  都服从参数为p的伯努利分布,那么随机变量  就形成参数为p的一系列伯努利试验.同样,如果n个随机变量  独立同 ...

  4. 学习笔记:The Log(我所读过的最好的一篇分布式技术文章)

    前言 这是一篇学习笔记. 学习的材料来自Jay Kreps的一篇讲Log的博文. 原文很长,但是我坚持看完了,收获颇多,也深深为Jay哥的技术能力.架构能力和对于分布式系统的理解之深刻所折服.同时也因 ...

  5. 学习笔记:The Log(我所读过的最好的一篇分布式技术文章)

    前言 这是一篇学习笔记. 学习的材料来自Jay Kreps的一篇讲Log的博文. 原文非常长.可是我坚持看完了,收获颇多,也深深为Jay哥的技术能力.架构能力和对于分布式系统的理解之深刻所折服.同一时 ...

  6. [译]如何禁止Requests库的log日志信息呢?

    原文来源: https://stackoverflow.com/questions/11029717/how-do-i-disable-log-messages-from-the-requests-l ...

  7. Android 项目Log日志输出优化

    概述 Android开发过程中经常需要向控制台输出日志信息,有些人还在用Log.i(tag,msg)的形式或者system.out.println(msg)方式吗?本篇文章对日志信息输出进行优化,以达 ...

  8. AOPS论坛上100+100个积分

    100+10 rare and irresistible integrals I bring you many beautiful integrals that I have collected ov ...

  9. Matlab 矩阵运算

    1.Syms 和sym的区别: syms是定义多个符号是符号变量的意思 sym只能定义一个符号变量,但可以具体到这个符号变量的内容 例:syms f z; %定义下x和y f=sym('a+b+c') ...

随机推荐

  1. JS 每次进入自动加载JS

    对于动态文件,比如 index.asp?id=... 或者 index.aspx?id=... 相信有经验的程序员都知道怎样禁止浏览器缓存数据了.但是对于静态文件(css,jpg,gif等等), 在什 ...

  2. Eqaulize Prices

    There are n products in the shop. The price of the ii-th product is aiai. The owner of the shop want ...

  3. 关于JavaScript中0、空字符串、'0'是true还是false的总结

    最近被问到关于js中空字符串是true还是false得问题,一时间没想起来,现在在chrome的console面板上输出代码测试一下. "" == false 结果是true    ...

  4. 95. 不同的二叉搜索树 II、96. 不同的二叉搜索树

    95 Tg:递归 这题不能算DP吧,就是递归 一个问题:每次的树都要新建,不能共用一个根节点,否则下次遍历对根左右子树的改动会把已经放进结果数组中的树改掉.. class Solution: def ...

  5. python 变量的赋值【内存地址】

    注意: python所有的数据都是对象,变量只是指向一个对象的地址,一旦将变量的值或者类型改变,变量指向的地址就有可能发生变化 这个特性在使用默认参数的时候一定要注意

  6. KALI修改密码

    许久不用的Kali,某天打开竟忘了密码! 网上的方法颇为简单,遂准备亲自试一下. #光标移动到第二行的“恢复模式”,按E进入[编辑模式]       #进入编辑模式,鼠标是不可操作的,用方向键往下面翻 ...

  7. next.config.js

    const configs = { // 编译文件的输出目录 distDir: 'dest', // 是否给每个路由生成Etag generateEtags: true, // 页面内容缓存配置 on ...

  8. 关于AutoCompleteTextView的用法:根据输入的自动匹配关键词

  9. C语言程序设计100例之(26):二进制数中1的个数

    例26   二进制数中1的个数 问题描述 如果一个正整数m表示成二进制,它的位数为n(不包含前导0),称它为一个n位二进制数.所有的n位二进制数中,1的总个数是多少呢? 例如,3位二进制数总共有4个, ...

  10. finalize()

    本文介绍的是Java里一个内建的概念,Finalizer.你可能对它对数家珍,但也可能从未听闻过,这得看你有没有花时间完整地看过一遍java.lang.Object类了.在java.lang.Obje ...