参考文献国家集训队2015论文《浅谈分块在一类在线问题的应用》-邹逍遥

题目链接

题目大意

一棵n个节点的树,树的每条边长度为1或2,每次询问x,y,z。
要求输出从x开始走,每次只能走到当前节点距离$\le z$的点,问最少几次能走到y

大致思路

考虑将树进行深度分块,设$size=\sqrt{n}$,对于每个节点x,如果$depth[x]\%size==1$则称它是关键点。
于是这棵树就被这些关键点分成了若干块(关键点属于它下面的块),如果某一块的大小小于size,就把它和上一个块合并。

这样这棵树的每个块大小就$\ge size$,块的个数就$\le size$,并且每个块的直径$\le size*4$,可以在$\sqrt{n}$的时间求出每个询问

具体实现

对于每个节点,预处理它到上面的块中离自己最近的节点(一定是他的祖先)的距离和在z($z\le size*2$)
(当$z>size$时可以一步跨过一个块)的情况下要走多少步,最后一步还剩下多长走z后到达的节点
以及每个节点的父亲,和到父亲节点的距离(为在块中暴力准备)

对于每个询问,如果当前两个点不在同一个块,则所在块靠下的点移动到上面的块中离自己最近的节点
如果在同一个块,则暴力让深度深的点移到它的父亲

总复杂度$O(n\sqrt{n})$

#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
#define maxn 100005
#define maxs 350
struct Edge{
int next,to,w;
}edge[maxn*];
int n,size,fi[maxn],se,stack[maxn],top,depth[maxn],fa[maxn],block[maxn],s,remain[maxn][maxs*],step[maxn][maxs*],key[maxs],dis[maxn];
int reach[maxn][maxs*],dis1[maxn];
inline void add_edge(int u,int v,int w){
edge[++se].next=fi[u],fi[u]=se,edge[se].to=v,edge[se].w=w,
edge[++se].next=fi[v],fi[v]=se,edge[se].to=u,edge[se].w=w;
}
int dfs(int x){//第一次dfs分块,预处理出fa(父亲),dis(到父亲的距离)
int si=,k;
stack[top++]=x;
for(int i=fi[x];i;i=edge[i].next){
int v=edge[i].to;
if(v==fa[x])continue;
dis[v]=edge[i].w,fa[v]=x,depth[v]=depth[x]+,si+=dfs(v);
}
if(depth[x]%size==&&si>=size){
k=++s;block[x]=k;key[k]=x;
while(stack[--top]!=x){
block[stack[top]]=k;
}
}
return si;
}
void dfs1(int x){//第二次dfs预处理reach[x][z](走z距离能到达的点),dis1(到最近的不在一个块的祖先有多少距离)step(要走几步),remain(还剩多少距离)
reach[x][]=x;
reach[x][]=dis[x]==?fa[x]:x;
for(int i=;i<=size*;i++){
if(i-dis[x]>=)reach[x][i]=reach[fa[x]][i-dis[x]];
else reach[x][i]=fa[x];
}
if(block[x]==block[fa[x]]){
int v;
for(int i=;i<=size*;i++){
if(block[x]==block[v=reach[x][i]]){
step[x][i]=step[v][i]+;
remain[x][i]=remain[v][i];
}
else{
step[x][i]=;remain[x][i]=remain[fa[x]][i]-dis[x];
}
}
dis1[x]=dis1[fa[x]]+dis[x];
}
else{
for(int i=;i<=size*;i++){
step[x][i]=;remain[x][i]=i-dis[x];
}
dis1[x]=dis[x];
}
for(int i=fi[x];i;i=edge[i].next){
int v=edge[i].to;
if(v!=fa[x])dfs1(v);
}
}
int query(int l,int r,int p){//对于p<=size*2的询问
int ans=,sup1=,sup2=;
while(block[l]!=block[r]){//如果两个点不在一个块
if(block[l]<block[r]){
if(dis1[l]>sup1)l=reach[l][sup1],ans+=step[l][p],sup1=remain[l][p],l=fa[key[block[l]]];
else sup1=remain[l][sup1],l=fa[key[block[l]]];
}
else{
if(dis1[r]>sup2)r=reach[r][sup2],ans+=step[r][p],sup2=remain[r][p],r=fa[key[block[r]]];
else sup2=remain[r][sup2],r=fa[key[block[r]]];
}
}
while(l!=r){//在一个块后就暴力走
if(depth[l]>depth[r]){
if(sup1>=dis[l])sup1-=dis[l],l=fa[l];
else sup1=p-dis[l],ans++,l=fa[l];
}
else {
if(sup2>=dis[r])sup2-=dis[r],r=fa[r];
else sup2=p-dis[r],ans++,r=fa[r];
}
}
if(sup1+sup2>=p)ans--;
return ans;
}
int query1(int l,int r,int p){//处理p>size*2的询问
int ans=,sup1=,sup2=;
while(block[l]!=block[r]){
if(block[l]<block[r]){
if(dis1[l]<=sup1)sup1-=dis1[l],l=fa[key[block[l]]];
else{
if(sup1>(size<<)){
if(reach[l][size<<]==reach[l][(size<<)-])sup1-=(size<<)-;
else sup1-=(size<<);
l=reach[l][size<<];
}
else{
l=reach[l][sup1],ans++,sup1=p;
}
}
}
else{
if(dis1[r]<=sup2)sup2-=dis1[r],r=fa[key[block[r]]];
else{
if(sup2>(size<<)){
if(reach[r][size<<]==reach[r][(size<<)-])sup2-=(size<<)-;
else sup2-=(size<<);
r=reach[r][size<<];
}
else{
r=reach[r][sup2],ans++,sup2=p;
}
}
}
}
while(l!=r){
if(depth[l]>depth[r]){
if(sup1>=dis[l])sup1-=dis[l],l=fa[l];
else sup1=p-dis[l],ans++,l=fa[l];
}
else {
if(sup2>=dis[r])sup2-=dis[r],r=fa[r];
else sup2=p-dis[r],ans++,r=fa[r];
}
}
if(sup1+sup2>=p)ans--;
return ans;
}
int main(){
int u,v,w,m;
scanf("%d",&n);size=sqrt(n);
for(int i=;i<n;i++)scanf("%d%d%d",&u,&v,&w),add_edge(u,v,w);
dfs();dfs1();
scanf("%d",&m);
for(int i=;i<m;i++){
scanf("%d%d%d",&u,&v,&w);
if(w<=size*)printf("%d\n",query(u,v,w));
else printf("%d\n",query1(u,v,w));
}
return ;
}

CodeChef TRIPS-Children Trips 树上分块的更多相关文章

  1. Codechef TRIPS Children Trips (分块、倍增)

    题目链接: https://www.codechef.com/problems/TRIPS 感觉CC有点毒瘤啊.. 题解: 首先有一个性质可能是因为太傻所以网上没人解释,然而我看了半天: 就是正序和倒 ...

  2. 【codechef】Children Trips

    Portal -->CC_Children Trips Solution (英文题解看得真爽qwq不过写的好详细啊ovo) 首先这题有一个很重要的条件就是边权是\(1\)或者\(2\),所以虽然 ...

  3. 【CODECHEF】Children Trips 倍增

    此题绝了,$O(n^{1.5}\ log\ n)$都可以过掉.... 题目大意:给你一颗$n$个点的树,每条边边权不是2就是$1$,有$m$个询问,每次询问一个人从$x$点走到$y$点,每天可以走的里 ...

  4. [CC-TRIPS]Children Trips

    [CC-TRIPS]Children Trips 题目大意: \(n(n\le10^5)\)座城市构成一棵树,且树上的每条边的长度\(l_i\)满足\(1\le l_i\le 2\).\(m(m\le ...

  5. 洛谷P2325王室联邦 SCOI2005 构造+树上分块

    正解:构造 解题报告: 照例先放传送门 umm其实我jio得这题应该在教树上莫队的时候港,应该是用来帮助理解树上莫队的分块方式的 然而这题是在学了树上分块之后再遇到的?就显得没那么难了吼 然后就随便说 ...

  6. [bzoj 3720] Gty的妹子树 (树上分块)

    树上分块(块状树) Description 我曾在弦歌之中听过你, 檀板声碎,半出折子戏. 舞榭歌台被风吹去, 岁月深处尚有余音一缕-- Gty神(xian)犇(chong)从来不缺妹子-- 他来到了 ...

  7. CODECHEF Oct. Challenge 2014 Children Trips

    @(XSY)[分塊, 倍增] Description There's a new trend among Bytelandian schools. The "Byteland Tourist ...

  8. 题解 Children Trips

    题目传送门 Description 给出一个大小为 \(n\) 的边权全为 \(1,2\) 的带权树,有 \(q\) 此查询,每次给出 \(u,v,p\) ,问 \(u\to v\) 每次可以最多走边 ...

  9. BZOJ 1086: [SCOI2005]王室联邦 [树上分块]

    portal 题意: 树分成若干块大小在$[s,3s]$之间,每块有一个根(可以不在块内),所有点到根路径上的点都必须在块内 据说这是一个保证了块大小直径个数的科学分块方法,貌似只有本题有用  我错了 ...

随机推荐

  1. Docker的镜像 导出导入

    查看当前已经安装的镜像 vagrant@vagrant:~$ sudo docker images REPOSITORY TAG IMAGE ID CREATED SIZE mysql 5.7.22 ...

  2. canvas像素的操作

    ###在canvas中的像素操作 到目前为止,我们尚未深入了解Canvas画布真实像素的原理,事实上, 你可以直接通过ImageData对象操纵像素数据,直接读取或将数据数组写入该对象中 ###得到场 ...

  3. Oracle18C安装后首次创建数据库并用sql developer 创建连接和用户

    注意: SQL Developer 不能用于创建Oracle数据库,只能用来连接已经创建的数据库,数据库的建立要通过Database Configuration Assistant(DBCA)来完成. ...

  4. Erlang学习记录:相关工具和文档

    在线工具和文档 网址 说明 OTP Reference Page Index 内置模块查询 Erlang/OTP Applications N Kernel Reference Manual 入门官方 ...

  5. SQL Server install

    { https://www.cnblogs.com/ios9/p/9527939.html https://www.cnblogs.com/ios9/p/9527815.html //在安装工具中 安 ...

  6. Windows netstat

    { 显示协议统计信息和当前 TCP/IP 网络连接. NETSTAT [-a] [-b] [-e] [-f] [-n] [-o] [-p proto] [-r] [-s] [-x] [-t] [int ...

  7. xml 单例类

    MD5JSON.h #pragma once #include "include/json/json.h" #include "include/md5/md5.h&quo ...

  8. 【未完成】Jmeter接口自动化测试:参数化设置

    1. 从CSV文件读取参数 创建一个CVS文件,文件第一行不写参数名,直接从参数值开始,每一列代表一个参数 在测试计划或者线程组中,添加一个配置元件-->CSV 数据文件设置 Filename: ...

  9. Spring基础面试题(一)

    Spring是什么? Spring是一个轻量级的IoC和AOP容器框架.是为Java应用程序提供基础性服务的一套框架,目的是用于简化企业应用程序的开发,它使得开发者只需要关心业务需求.常见的配置方式有 ...

  10. STM32 STM32F4 寄存器怎么配置不上, 无法往寄存器写入数据

    当出现这个问题时,往往是因为你没有在RCC寄存器中把相关的时钟使能打开. 配置寄存器之前记得调用"RCC_AxxxPeriphClockCmd"先打开需要配置的时钟源,别调用了“R ...