2019牛客多校第四场J free 最短路
free
题意
给出一个带权联通无向图,你需要从s走到t,你可以选择k条变让他们的权值为0问从s到t的最小权值是多少?
分析
思考一下,如果不带k条白嫖这个条件,那么这就是一个简单的dji就搞定了,我们再来看k的范围1000 直接乘上dji的复杂度还能过,空间也开的下,所以直接一个二维dji就搞定了
#include<bits/stdc++.h>
#include<vector>
#include<algorithm>
using namespace std;
#define pb push_back
#define F first
#define S second
#define mkp make_pair
const int maxn=1e3+5;
#define int ll
typedef long long ll;
const int inf=1e10;
int n,m,s,t,k,x,y,v;
int head[maxn],dist[maxn][maxn],vis[maxn][maxn];
struct ZZ{
int to,v,next;
}edge[maxn*4];
int cnt=0;
void add(int x,int y,int v){
edge[cnt].to=y;
edge[cnt].v=v;
edge[cnt].next=head[x];
head[x]=cnt++;
}
struct Node{
int v,id,cishu;
Node(int _v,int _id,int _cishu):v(_v),id(_id),cishu(_cishu){}
bool operator<(const Node&a)const {
return v>a.v;
}
};
priority_queue<Node>q;
void dij(){
for(int i=0;i<=n;i++){
for(int j=0;j<=k;j++){
vis[i][j]=0;
dist[i][j]=inf;
}
}
while(!q.empty())q.pop();
dist[s][k]=0;
q.push(Node(0,s,k));
while(!q.empty()){
auto tmp=q.top();
q.pop();
if(vis[tmp.id][tmp.cishu])continue;
vis[tmp.id][tmp.cishu]=1;
for(int i=head[tmp.id];i!=-1;i=edge[i].next){
int y=edge[i].to;
if(!vis[y][tmp.cishu]&&dist[y][tmp.cishu]>dist[tmp.id][tmp.cishu]+edge[i].v){
dist[y][tmp.cishu]=dist[tmp.id][tmp.cishu]+edge[i].v;
q.push(Node(dist[y][tmp.cishu],y,tmp.cishu));
}
if(tmp.cishu-1>=0&&!vis[y][tmp.cishu-1]&&dist[y][tmp.cishu-1]>dist[tmp.id][tmp.cishu]){
dist[y][tmp.cishu-1]=dist[tmp.id][tmp.cishu];
q.push(Node(dist[y][tmp.cishu-1],tmp.id,tmp.cishu-1));
}
}
}
ll ans=inf;
for(int i=0;i<=k;i++)ans=min(ans,dist[t][i]);
printf("%lld\n",ans);
//cout<<dist[t][0]<<endl;
}
int32_t main(){
scanf("%lld%lld%lld%lld%lld",&n,&m,&s,&t,&k);
for(int i=0;i<=n;i++)head[i]=-1;
for(int i=0;i<m;i++){
scanf("%lld%lld%lld",&x,&y,&v);
add(x,y,v);
add(y,x,v);
// add(x,y,-1);
// add(y,x,-1);
}
dij();
return 0;
}
2019牛客多校第四场J free 最短路的更多相关文章
- 2019牛客多校第四场J free——分层图&&最短路
题意 一张无向图,每条边有权值,可以选择不超过 $k$ 条路使其权值变成0,求 $S$ 到 $T$ 的最短路.(同洛谷 P4568) 分析 首先,分层图最短路可以有效解决这种带有 「阶段性」的最短路, ...
- 牛客多校第四场 J Free 最短路
题意: 求最短路,但是你有k次机会可以把路径中某条边的长度变为0. 题解: 跑k+1次迪杰斯特拉,设想有k+1组dis数组和优先队列,第k组就意味着删去k条边的情况,每次松弛操作,松弛的两点i,j和距 ...
- 2019牛客多校第四场 I题 后缀自动机_后缀数组_求两个串de公共子串的种类数
目录 求若干个串的公共子串个数相关变形题 对一个串建后缀自动机,另一个串在上面跑同时计数 广义后缀自动机 后缀数组 其他:POJ 3415 求两个串长度至少为k的公共子串数量 @(牛客多校第四场 I题 ...
- 2019牛客多校第四场 A meeting
链接:https://ac.nowcoder.com/acm/contest/884/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语言10485 ...
- 2019牛客多校第四场B xor——线段树&&线性基的交
题意 给你 $n$ 个集合,每个集合中包含一些整数.我们说一个集合表示一个整数当且仅当存在一个子集其异或和等于这个整数.现在你需要回答 $m$ 次询问 ($l, r, x$),是否 $l$ 到 $r$ ...
- 2019牛客多校第四场A meeting——树的直径
题意: 一颗 $n$ 个节点的树上标有 $k$ 个点,找一点使得到 $k$ 个关键结点的最大距离最小. 分析: 问题等价于求树的直径,最小距离即为直径除2向上取整. 有两种求法,一是动态规划,对于每个 ...
- [2019牛客多校第四场][G. Tree]
题目链接:https://ac.nowcoder.com/acm/contest/884/G 题目大意:给定一个树\(A\),再给出\(t\)次询问,问\(A\)中有多少连通子图与树\(B_i\)同构 ...
- 2019牛客多校第四场D-triples I 贪心
D-triples 题意 给你一个\(n\),问至少有几个数或运算起来可以等于\(n\),并且输出数量和这个几个数.题目说明给的\(n\)一定符合条件(不会输出\(n= 1\) 之类不存在情况). 思 ...
- 2019牛客多校第四场C-sequence(单调栈+线段树)
sequence 题目传送门 解题思路 用单调栈求出每个a[i]作为最小值的最大范围.对于每个a[i],我们都要乘以一个以a[i]为区间内最小值的对应的b的区间和s,如果a[i] > 0,则s要 ...
随机推荐
- H5-设置全屏背景图片样式
.bgimg{ width: 100%; height: 95vh; margin: 0; padding: 0 .32rem; background-image: url('../image/ld. ...
- mysql 视图、触发器、事务、存储过程、函数
一 视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集,可以将该结果集当做表来使用. 使用视图我们可以把查询过程中的 ...
- BZOJ 3143 游走
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
- How to Install Oracle Java 11 on Ubuntu 18.04 LTS (Bionic) Written by Rahul, Updated on April 3, 20
本文系转载备份 请阅读点击下面链接阅读原文以获取更佳地阅读体验.谢谢. How to Install Oracle Java 11 on Ubuntu 18.04 LTS (Bionic) Writt ...
- PHP正则表达式及表单注册案例
正则表达式是一种具有特定模式的用来匹配文本的字符串 preg_match 匹配 $pattern = '/php/'; $subject = "php 是最好的编程语言,php 没有之一!& ...
- 假期学习【一】Ubuntu中Linux的基础操作
题目: Linux 系统的安装和常用命令 姓名: 赵路仓 日期: 2020.1.24 实验环境: Ubuntu 实验内容与完成情况: (1)切换到目录 /usr/bin: (2)查看目录/usr/lo ...
- SQL语句中count(1)count(*)count(字段)用法的区别(转)
SQL语句中count(1)count(*)count(字段)用法的区别 在SQL语句中count函数是最常用的函数之一,count函数是用来统计表中记录数的一个函数, 一. count(1)和cou ...
- Wannafly Camp 2020 Day 5A Alternative Accounts
There are n different accounts on the website, and some of them competed in the recent k contests. H ...
- [HNOI2004] L语言 - AC自动机,dp
给定字典和没有标点的文章,求能够被识别的最长前缀. 显然不能贪心,设\(f[i]\)表示前\(i\)个字符构成的前缀能否被识别,然后在AC自动机上暴力转移即可. 具体来说,每走到一个新位置,就沿着fa ...
- (转)进程同步之临界区域问题及Peterson算法
转自:http://blog.csdn.net/speedme/article/details/17595821 1. 背景 首先,看个例子,进程P1,P2共用一个变量COUNT,初始值为0 ...