opencv —— HoughLines、HoughLinesP 霍夫线变换原理(标准霍夫线变换、多尺度霍夫线变换、累积概率霍夫线变换)及直线检测
霍夫线变换的原理
- 一条直线在图像二维空间可由两个变量表示,有以下两种情况:

① 在笛卡尔坐标系中:可由参数斜率和截距(k,b)表示。
② 在极坐标系中:可由参数极经和极角(r,θ)表示。
对于霍夫线变换,我们将采用第二种方式极坐标系来表示直线,因此直线的表达式可为:

化简便可得到:

- 对于(x0,y0),我们可以将通过这一点的所有直线统一定义为:

这就意味着每一对
代表一条通过点
的直线。
对于一个给定点
,我们可以在直角坐标系中,绘出所有通过它的直线(θ 为 x 轴,r 为 y 轴)。最终我们将得到一条正弦曲线。

注意:只绘出满足下列条件的点
and
。
- 我们可以对图像中所有的点进行上述操作.。如果两个不同点进行上述操作后得到的曲线在平面
-
相交, 这就意味着它们有一个公共的(θ,rθ),即过一条公共的直线。下图中,若曲线每点权重均为 1 ,则交点处权重为 3。

越多曲线交于一点,也就意味着这个交点表示的直线由更多的点组成,权重和越大。我们可以设置一个阈值,来决定多少条曲线交于一点(权重多大)我们才认为检测到了一条直线。
这就是霍夫线变换要做的.。它追踪图像中每个点对应曲线间的交点.。如果交于一点的曲线的数量超过了阈值, 那么可以认为这个交点所代表的参数对
在原图像中为一条直线。
OpenCV 实现了以下三种霍夫线变换:
- 标准霍夫变换(StandardHough Transform,SHT)
- 原理在上面的部分已经说明了. 它能给我们提供一组参数对(ρ,θ)的集合来表示检测到的直线。
- 在 OpenCV 中通过函数 HoughLines 来实现。
- 多尺度霍夫变换(Multi-ScaleHough Transform,MSHT)
- 和标准霍夫变换类似。
- 累计概率霍夫变换(ProgressiveProbabilistic Hough Transform,PPHT),由HoughLinesP函数调用。
- 这是执行起来效率更高的霍夫线变换. 它输出检测到的直线的端点
。 - 在 OpenCV 中它通过函数 HoughLinesP 来实现。
- 这是执行起来效率更高的霍夫线变换. 它输出检测到的直线的端点
void HoughLines(InputArray image, OutputArray lines, double rho, double theta, int threshold, double srn = 0, double stn = 0);
- image,输入图像,即源图像。需要为 8 位的单通道二值图像。
- lines,存放直线的矢量信息的数组。每条直线由具有 2 个元素的矢量(ρ,Θ)表示,其中,ρ 是离坐标原点(0,0)也就是图像左上角的距离,Θ 是弧度线条旋转角度(0 表示垂直直线,∏/2 表示水平直线,注意,不是 0 度和 90 度)

- rho,以像素为单位的距离精度。另一种表述是平面
-
中 r 轴的单位长度。 - theta,以弧度为单位的角度精度。另一种表示是平面
-
中 θ 轴的单位长度。 - threshold,权重累加平面的阈值参数。大于阈值 threshold 的线段才可以被确认为直线。
- srn,默认值为 0。多尺度霍夫线变换才会用到的参数。对于多尺度霍夫线变换,平面
-
中 r 轴的单位长度 = rho / srn。 - stn,默认值为 0。也是多尺度霍夫线变换才会用到的参数。对于多尺度霍夫线变换,平面
-
中 θ 轴的单位长度 = theta / stn。如果 srn、stn 同时为 0,就表示使用经典霍夫变换,否则两个参数都应该为正数。
代码示例:
#include<opencv.hpp>
#include<iostream>
using namespace std;
using namespace cv;
int hough_value = ;
Mat src, canny_img;
void hough_change(int, void*) {
vector<Vec2f>lines;
HoughLines(canny_img, lines, , CV_PI / 180.0, hough_value);
RNG rngs = { };
Mat show = src.clone();
for (int i = ; i < lines.size(); i++) {
float rho = lines[i][], theta = lines[i][]; double sin_theta = sin(theta), cos_theta = cos(theta);
double x = rho * cos_theta, y = rho * sin_theta; //以垂点为基础,将直线延长
Point pt1, pt2;
pt1.x = cvRound(x + * (-sin_theta));
pt1.y = cvRound(y + * (cos_theta));
pt2.x = cvRound(x - * (-sin_theta));
pt2.y = cvRound(y - * (cos_theta)); Scalar colors = Scalar(rngs.uniform(, ), rngs.uniform(, ), rngs.uniform(, ));
line(show, pt1, pt2, colors, );
}
imshow("show", show);
}
int main() {
src = imread("C:/Users/齐明洋/Desktop/1.jpg");
GaussianBlur(src, src, Size(, ), , );
imshow("src", src); Canny(src, canny_img, , , );
imshow("canny_img", canny_img); namedWindow("show");
createTrackbar("threshold", "show", &hough_value, , hough_change);
hough_change(, ); waitKey();
}
效果演示:

累计概率霍夫变换:HoughLinesP 函数
void HoughLinesP(InputArray image, OutputArray lines, double rho, double theta, int threshold, double minLineLength = 0, double maxLineGap= 0);
- lines,存放直线信息矢量的数组。每条直线由具有 4 个元素的矢量(x_1,y_1,x_2,y_2)表示,其中,(x_1,y_1)和(x_2,y_2)是每条检测到的直线的两端端点。
- minLineLength ,默认值为 0。最短线段的长度,比这个设定参数短的线段就不能被显现出来。
- maxLineGap,默认值为 0。允许将同一行点与点之间连接起来的最大距离。
- 其余参数,类比 HoughLines 函数的参数。
代码示例:
#include<opencv.hpp>
#include<iostream>
using namespace std;
using namespace cv;
int hough_value = ;
Mat src, canny_img;
void hough_change(int, void*) {
vector<Vec4f>lines;
HoughLinesP(canny_img, lines, , CV_PI / , hough_value, , );
RNG rngs = { };
Mat show = src.clone();
for (int i = ; i < lines.size(); i++) {
Point pt1, pt2;
pt1.x = lines[i][];
pt1.y = lines[i][];
pt2.x = lines[i][];
pt2.y = lines[i][]; Scalar colors = Scalar(rngs.uniform(, ), rngs.uniform(, ), rngs.uniform(, ));
line(show, pt1, pt2, colors, );
}
imshow("show", show);
}
int main() {
src = imread("C:/Users/齐明洋/Desktop/1.jpg");
GaussianBlur(src, src, Size(, ), , );
imshow("src", src); Canny(src, canny_img, , , );
imshow("canny_img", canny_img); namedWindow("show");
createTrackbar("threshold", "show", &hough_value, , hough_change);
hough_change(, ); waitKey();
}
效果演示:

借鉴博客:https://www.cnblogs.com/xmu-rcs-jty/p/7531814.html
opencv —— HoughLines、HoughLinesP 霍夫线变换原理(标准霍夫线变换、多尺度霍夫线变换、累积概率霍夫线变换)及直线检测的更多相关文章
- opencv:霍夫直线检测
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace st ...
- Hough变换原理
Hough变换原理 一.简单介绍 Hough变换是图像处理中从图像中识别几何形状的基本方法之一.Hough变换的基本原理在于利用点与线的对偶性,将原始图像空间的给定的曲线通过曲线表达形式变为参数空间的 ...
- Python+OpenCV图像处理(十四)—— 直线检测
简介: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线 ...
- 【python+opencv】直线检测+圆检测
Python+OpenCV图像处理—— 直线检测 直线检测理论知识: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进 ...
- opencv直线检测在c#、Android和ios下的实现方法
opencv直线检测在c#.Android和ios下的实现方法 本文为作者原创,未经允许,不得转载 :原文由作者发表在博客园:http://www.cnblogs.com/panxiaochun/p/ ...
- opencv学习笔记霍夫变换——直线检测
参考大佬博文:blog.csdn.net/jia20003/article/details/7724530 lps-683.iteye.com/blog/2254368 openCV里有两个函数(比较 ...
- Win8 Metro(C#)数字图像处理--2.38Hough变换直线检测
原文:Win8 Metro(C#)数字图像处理--2.38Hough变换直线检测 [函数名称] Hough 变换直线检测 HoughLineDetect(WriteableBit ...
- Android开发中的OpenCV霍夫直线检测(Imgproc.HoughLines()&Imgproc.HoughLinesP())
本文为作者原创,转载请注明出处(http://www.cnblogs.com/mar-q/)by 负赑屃 //2017-04-21更新: 很多网友希望能得到源码,由于在公司做的,所以不太方便传出来 ...
- 霍夫直线检测 opencv
本次实验是检测图像中的直线,用到了HoughLines()和HoughLinesP()函数,其中HoughLinesP()称为累计概率霍夫变换,实验结果显示累计概率霍夫变换要比标准霍夫变换的效果好.具 ...
随机推荐
- go--->beego框架安装
beego 安装 1.新建gopath 工程目录 2.在新建的工程目录中执行go get github.com/astaxie/beego 命令 3.再执行go get github.com/beeg ...
- Web自动化测试项目(七)日志
一.日志作用 调试程序 了解系统程序运行的情况,是否正常 系统程序运行故障分析与问题定位 用来做用户行为分析和数据统计 二.为项目添加日志 └── utils ├── log_utils.py └── ...
- C++快读模板
C++的快速读入模板 inline int read() { ; char ch = getchar(); ') { if (ch == '-') flag = true; ch = getchar( ...
- gcd(最大公约数)算法
PS: 求一个两个数之间的最大公约数,往往需要被记起. int gcd(int x, int y) { if(y == 0) return x; int r = x % y; return gcd(y ...
- 学习记录(Python列表)
列表(List)是Python语言中最通用的序列数据结构之一,列表是一个没有固定长度的,用来表示任意类型对象的位置相关的有序集合.列表中的数据项不需要具有相同的数据类型 列表的基本操作: 1.创建列表 ...
- 今天你上班了吗?来聊聊一个隐蔽了 5 年的BUG!
前言 今天,我们要揭晓一个 FineUI 隐藏最深的一个BUG,这个问题从 2014-07-30 发布 FineUIPro v1.0.0 就一直存在,直到最新于 2020-01-10 发布的 v6.1 ...
- Linux 下tomcat 的重新启动
在 Linux 系统下,重启 Tomcat 如何使用命令操作? 1.首先,进入 Tomcat 的 bin 目录 cd /usr/local/tomcat/bin 2.使用Tomcat关闭命令 ./sh ...
- 5.场景3:高可用性使用分布式虚拟路由(DVR)
这个场景描述了使用ML2插件和Open vSwitch的OpenStack网络服务的高可用性分布式虚拟路由(DVR)实现.示例配置创建了一个Flat外部网络和一个VXLAN项目(租户)网络.然而,这种 ...
- Spring基于注解配置AOP
D:\Java\IdeaProjects\JavaProj\SpringHelloWorld\src\aop.xml <?xml version="1.0" encoding ...
- Linux内核单链表
主要说明Linux内核中单链表操作的关键思想,需要注意的地方 1. 假设 为了说明关键思想,对数据结构进行了精简 2. 数据结构定义 struct ListNode { int val; ListNo ...