Problem Statement

    

You are given an int W. There is a rectangle in the XY-plane with corners at (0, 0), (0, 1), (W, 0), and (W, 1). Let T[x] be the triangle with vertices at (0, 1), (W, 1) and (x, 0). (All points that lie inside the triangle are a part of T[x] as well.)

The objective in this problem is to calculate the area of the region (T[0] xor T[1] xor ... xor T[W]). (See Notes for a formal definition.) The figures below show the region (T[0] xor T[1] xor ... xor T[W]) for W=1,2,3,4,5,6.

  

Return the integer part of the area of the region.

Definition

    
Class: TriangleXor
Method: theArea
Parameters: int
Returns: int
Method signature: int theArea(int W)
(be sure your method is public)

Limits

    
Time limit (s): 2.000
Memory limit (MB): 64

Notes

- For sets of points A and B in the XY-plane, the set (A xor B) is defined as the set of all points that lie in exactly one of the sets A and B (i.e., points that belong to the union of A and B but don't belong to their intersection).
- If the exact area is A, the correct return value is floor(A), not round(A). In words: you should return the largest integer that is less than or equal to the exact area.
- The format of the return value was chosen to help you in case of small precision errors. The constraints guarantee that computing the correct area with absolute error less than 0.01 is sufficient to determine the correct return value. The author's solution is significantly more precise than that.

Constraints

- W will be between 1 and 70,000, inclusive.
- The difference between the exact area of the region and the nearest integer will be greater than 0.01.

Examples

0)  
    
1
Returns: 0
The exact area is 0.5.
1)  
    
2
Returns: 1
The area is approximately 1.33333.
2)  
    
3
Returns: 1
The exact area is 1.35.
3)  
    
4
Returns: 2
The area is approximately 2.62857. Note that the correct answer is 2, not 3.
4)  
    
5
Returns: 2
The area is approximately 2.13294.
5)  
    
12345
Returns: 4629
 

题意:给你一个1*n的矩形,按图中方法划线、涂色,问多大面积涂为黄色。

题解:

根据题目中的图,可以用两条对角线把涂色区域分为四个部分。

对于上方部分,若n为偶数,全为黄色;若为奇数,全为黑色。

对于左右部分,通过三角形的相似求出各个等高三角形的底之和与对角线长度的比例,计算面积。

对于下方部分,同样通过相似求出各组等高四边形的底之和与高,计算面积。

代码:

 class JumpFurther
{
public:
int furthest(int N, int badStep)
{
//$CARETPOSITION$
int tot=,x=;
for(int i=;i<=N;i++)
{
tot=tot+i; if(tot==badStep)x--;
}
return tot+x;
}
};

TopCoder[SRM587 DIV 1]:TriangleXor(550)的更多相关文章

  1. TopCoder[SRM587 DIV 1]:ThreeColorability(900)

    Problem Statement      There is a H times W rectangle divided into unit cells. The rows of cells are ...

  2. TopCoder[SRM513 DIV 1]:Reflections(1000)

    Problem Statement      Manao is playing a new game called Reflections. The goal of the game is trans ...

  3. Topcoder SRM584 DIV 2 500

    #include <set> #include <iostream> #include <string> #include <vector> using ...

  4. Topcoder SRM583 DIV 2 250

    #include <string> #include <iostream> using namespace std; class SwappingDigits { public ...

  5. 【补解体报告】topcoder 634 DIV 2

    A:应该是道语文题,注意边界就好: B:开始考虑的太复杂,没能够完全提取题目的思维. 但还是A了!我愚蠢的做法:二分答案加暴力枚举, 枚举的时候是完全模拟的,比如每次取得时候都是从大到小的去取,最后统 ...

  6. Topcoder Srm627 DIV 2

    A,B:很水,注意边界,话说HACK都是这些原因. C: R[I][J]:表示反转I-J能改变冒泡排序的次数: DP方程:dp[i][k]=max(dp[j][k],dp[j][k-1]+dp[j][ ...

  7. Topcoder SRM548 Div 1

    1. KingdomAndTrees 给出n个数a[1..n],求一个数组b[1..n]满足b严格递增,且b[1]>=1. 定义代价为W = max{abs(a[i]-b[i])},求代价最小值 ...

  8. TopCoder[SRM513 DIV 1]:PerfectMemory(500)

    Problem Statement      You might have played the game called Memoria. In this game, there is a board ...

  9. [topcoder]BinaryCards

    现在觉得有空时可以刷一下topcoder的DIV 2的Lvl 3的题目.感觉和刷LeetCode和WikiOi都是不一样的. http://community.topcoder.com/stat?c= ...

随机推荐

  1. mybatis 多表查询sql

    在使用spring,spring mvc,mybatis时,mybatis链接数据库做多表查询的时候,sql语句中直接使用left join等链接字符就可以 链接多个表,参数类型是parameterT ...

  2. 【Nacos】本地集群部署

    关于Nacos已经展开了四篇入门文章: 初探Nacos(一)-- 单机模式启动 初探Nacos(二)-- SpringCloud使用Nacos的服务注册与发现 初探Nacos(三)-- SpringB ...

  3. Delphi 判断某个系统服务是否存在及相关状态

    记得use WinSvc; //------------------------------------- // 获取某个系统服务的当前状态 // // return status code if s ...

  4. php的socket编程(socket关键几个函数)

    php的socket编程(socket关键几个函数) 一.总结 一句话总结: socket_create.socket_connect.socket_bind.socket_listen.socket ...

  5. Qt 线程基础(QThread、QtConcurrent、QThreadPool等)

      使用线程 基本上有种使用线程的场合: 通过利用处理器的多个核使处理速度更快. 为保持GUI线程或其他高实时性线程的响应,将耗时的操作或阻塞的调用移到其他线程. 何时使用其他技术替代线程 开发人员使 ...

  6. Useful code snippets with C++ boost

    Useful code snippets with C++ boost Is Punctuation It’s very straight forward to use boost.regex as ...

  7. 23. Jmeter使用ServerAgent对服务器进行性能监控

    我们在做服务器性能测试的时候,往往会考虑四个点:CPU.网络.磁盘.内存.一般情况下是使用Linux命令进行监控,那么jmeter可否做到呢?答案是可以的,闲话不多说,进入正题. 环境准备 jmete ...

  8. 调试Bochs在Linux Mint下面symbol not found的问题

    在我的Linux Mint上使用Bochs时出现了很奇怪的问题,按照http://www.cnblogs.com/long123king/p/3568575.html步骤 会提示: symbol no ...

  9. Bochs调试加载符号文件的问题

    1. Bochs中的调试命令ldsym没有触发的情况. 参考:http://www.ibm.com/developerworks/cn/linux/sdk/lex/ Lex 代表 Lexical An ...

  10. Haskell语法

    http://www.ibm.com/developerworks/cn/java/j-cb07186.html 1. 构造符号 : 比如: 1:2:3:[] 而常用的 [1,2,3] 是一种语法糖( ...