Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. A sub-rectangle is any contiguous sub-array of size 1 × 1 or greater located within the whole array.
As an example, the maximal sub-rectangle of the array:
0 −2 −7 0
9 2 −6 2
−4 1 −4 1
−1 8 0 −2
is in the lower-left-hand corner and has the sum of 15.

Input

The input consists of an N × N array of integers. The input begins with a single positive integer Non a line by itself indicating the size of the square two dimensional array. This is followed by N 2integers separated by white-space (newlines and spaces). These N 2 integers make up the array in row-major order (i.e., all numbers on the first row, left-to-right, then all numbers on the second row, left-to-right, etc.). N may be as large as 100. The numbers in the array will be in the range [−127, 127].

Output

The output is the sum of the maximal sub-rectangle.
 
题目大意:给一个n*n的矩阵,求和最大的子矩阵。
思路:用sum[i][j]表示从mat[1][j]~mat[i][j]的总和(从1开始计数)
然后枚举上下两行夹着的矩阵,设第一行为r1,第二行为r2,复杂度为O(n^2),然后计算这两行夹着的最大子矩阵。
用sum[r2][j] - sum[r1 - 1][j]表示mat[r1][j]~mat[r2][j]的总和。
那么,我们把r1~r2之间的列,每一列算出来,就变成了一个只有n个元素的一维数组,求最大连续子序列。
这个就是经典问题了,设a[i] = sum[r2][i] - sum[r1][i],初始化t = 0。
t从a[1]加到a[n],当t < 0的时候,令t = 0,算到 i 的时候,t就表示以a[i - 1]为结尾的最大后缀。
因为,如果我们算到a[i],此时t < 0,那么,算a[i + 1]的时候,肯定不会加上a[i]和前面的数字,不管怎么加,前面的数都小于0,还是不加的好。
能加的肯定要加上,所以复杂度为O(n)。
总复杂度为O(n^3)
 
代码(0.031S):
 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std; const int MAXN = ; int mat[MAXN][MAXN], n;
int sum[MAXN][MAXN]; void calsum() {
for(int i = ; i <= n; ++i)
for(int j = ; j <= n; ++j) sum[i][j] = sum[i - ][j] + mat[i][j];
} int solve() {
int ans = -;
for(int r1 = ; r1 <= n; ++r1) {
for(int r2 = r1; r2 <= n; ++r2) {
int t = ;
for(int j = ; j <= n; ++j) {
t += sum[r2][j] - sum[r1 - ][j];
ans = max(t, ans);
if(t < ) t = ;
}
}
}
return ans;
} int main() {
scanf("%d", &n);
for(int i = ; i <= n; ++i)
for(int j = ; j <= n; ++j) scanf("%d", &mat[i][j]);
calsum();
printf("%d\n", solve());
}

URAL 1146 Maximum Sum(DP)的更多相关文章

  1. ural 1146. Maximum Sum(动态规划)

    1146. Maximum Sum Time limit: 1.0 second Memory limit: 64 MB Given a 2-dimensional array of positive ...

  2. URAL 1146 Maximum Sum(最大子矩阵的和 DP)

    Maximum Sum 大意:给你一个n*n的矩阵,求最大的子矩阵的和是多少. 思路:最開始我想的是预处理矩阵,遍历子矩阵的端点,发现复杂度是O(n^4).就不知道该怎么办了.问了一下,是压缩矩阵,转 ...

  3. 【noi 2.6_1481】Maximum sum(DP)

    题意:求不重叠的2段连续和的最大值. 状态定义f[i]为必选a[i]的最大连续和,mxu[i],mxv[i]分别为前缀和后缀的最大连续和. 注意:初始化f[]为0,而max值为-INF.要看好数据范围 ...

  4. 最大子矩阵和 URAL 1146 Maximum Sum

    题目传送门 /* 最大子矩阵和:把二维降到一维,即把列压缩:然后看是否满足最大连续子序列: 好像之前做过,没印象了,看来做过的题目要经常看看:) */ #include <cstdio> ...

  5. ural 1146. Maximum Sum

    1146. Maximum Sum Time limit: 0.5 secondMemory limit: 64 MB Given a 2-dimensional array of positive ...

  6. UVA 10891 Game of Sum(DP)

    This is a two player game. Initially there are n integer numbers in an array and players A and B get ...

  7. URAL 1146 Maximum Sum & HDU 1081 To The Max (DP)

    点我看题目 题意 : 给你一个n*n的矩阵,让你找一个子矩阵要求和最大. 思路 : 这个题都看了好多天了,一直不会做,今天娅楠美女给讲了,要转化成一维的,也就是说每一列存的是前几列的和,也就是说 0 ...

  8. URAL 1586 Threeprime Numbers(DP)

    题目链接 题意 : 定义Threeprime为它的任意连续3位上的数字,都构成一个3位的质数. 求对于一个n位数,存在多少个Threeprime数. 思路 : 记录[100, 999]范围内所有素数( ...

  9. Max Sum (dp)

    Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. F ...

随机推荐

  1. Android高级之Dalvik初识

    本文来自http://blog.csdn.net/liuxian13183/ ,引用必须注明出处! 研究安卓已多年,一直在应用层做开发,Framework层只是看过,也就是大家常说的"底层& ...

  2. 【VC6】【集成工具】将输入信息集成到VC工具中

    1.首先写一个工具,可以接受外部参数, 并且输入格式必须是固定的“"%s(%d):\n", __FILE__, __LINE__”形式. 2.编译生成EXE准备进行使用: 3.在V ...

  3. C++ 安全字符串拼接

    #include <stdio.h> #include <stdint.h> #include <stdarg.h> #if defined(__GNUC__) # ...

  4. NuGet的几个小技巧

    因为是转载文章 在此标明出处,以前有文章是转的没标明的请谅解,因为有些已经无法找到出处,或者与其它原因. 如有冒犯请联系本人,或删除,或标明出处. 因为好的文章,以前只想收藏,但连接有时候会失效,所以 ...

  5. LightOj 1138 - Trailing Zeroes (III) 阶乘末尾0的个数 & 二分

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1138 题意:给你一个数n,然后找个一个最小的数x,使得x!的末尾有n个0:如果没有输出 ...

  6. CALayer的使用

    http://blog.csdn.net/maylorchao/article/details/42652161 http://www.jianshu.com/p/8b0d694d1c69城觅

  7. sqlserver 一个排序问题

    当 应用select * into a from b order by b1,b2语句时,试图使a表中的物理顺序改变,是 不能够实现的 select * into 同时复制了b表的物理结构,所以a表中 ...

  8. Top Five Communication Skills for Project Managers

    Research among project managers globally identifies top communication skills for leading teams. Lead ...

  9. Windows7下 配置 Apache + PHP + MySQL + Zend Studio配置

    相关软件下载: Apache                               版本:(httpd-2.2.25) PHP                                   ...

  10. IDEA UML类图插件

    idea已经集成了该功能,只是默认没打开,仍然打开Settings界面,定位到Plugins,输入UML,参考下图: