Apache Kafka源码分析 - KafkaApis
kafka apis反映出kafka broker server可以提供哪些服务,
broker server主要和producer,consumer,controller有交互,搞清这些api就清楚了broker server的所有行为
handleOffsetRequest
提供对offset的查询的需求,比如查询earliest,latest offset是什么,或before某个时间戳的offset是什么
try {
// ensure leader exists
// 确定是否是leader replica,因为只有leader可以响应offset请求
// 如果不是会抛异常
val localReplica = if(!offsetRequest.isFromDebuggingClient)
replicaManager.getLeaderReplicaIfLocal(topicAndPartition.topic, topicAndPartition.partition)
else
replicaManager.getReplicaOrException(topicAndPartition.topic, topicAndPartition.partition)
val offsets = {
val allOffsets = fetchOffsets(replicaManager.logManager, //获取offsets列表
topicAndPartition,
partitionOffsetRequestInfo.time,
partitionOffsetRequestInfo.maxNumOffsets)
if (!offsetRequest.isFromOrdinaryClient) {
allOffsets
} else {
val hw = localReplica.highWatermark.messageOffset
if (allOffsets.exists(_ > hw)) //过滤掉hw以后的offsets,因为那些都不是应该用户可见的
hw +: allOffsets.dropWhile(_ > hw)
else
allOffsets
}
}
(topicAndPartition, PartitionOffsetsResponse(ErrorMapping.NoError, offsets))
} catch {
// NOTE: UnknownTopicOrPartitionException and NotLeaderForPartitionException are special cased since these error messages
// are typically transient and there is no value in logging the entire stack trace for the same
case utpe: UnknownTopicOrPartitionException =>
warn("Offset request with correlation id %d from client %s on partition %s failed due to %s".format(
offsetRequest.correlationId, offsetRequest.clientId, topicAndPartition, utpe.getMessage))
(topicAndPartition, PartitionOffsetsResponse(ErrorMapping.codeFor(utpe.getClass.asInstanceOf[Class[Throwable]]), Nil) )
case nle: NotLeaderForPartitionException =>
warn("Offset request with correlation id %d from client %s on partition %s failed due to %s".format(
offsetRequest.correlationId, offsetRequest.clientId, topicAndPartition,nle.getMessage))
(topicAndPartition, PartitionOffsetsResponse(ErrorMapping.codeFor(nle.getClass.asInstanceOf[Class[Throwable]]), Nil) )
case e: Throwable =>
warn("Error while responding to offset request", e)
(topicAndPartition, PartitionOffsetsResponse(ErrorMapping.codeFor(e.getClass.asInstanceOf[Class[Throwable]]), Nil) )
}
可以看到,当没有找到topic->partition, 或partition leader,或其他异常的时候,就会导致返回offsets为nil
这样在客户端,经常通过获取latestOffset来算spoutLag,会出现负值的情况
然后,fetchOffset调用fetchOffsetsBefore,来完成offset的获取,
def fetchOffsetsBefore(log: Log, timestamp: Long, maxNumOffsets: Int): Seq[Long] = {
val segsArray = log.logSegments.toArray //取出所有segments
var offsetTimeArray: Array[(Long, Long)] = null
if(segsArray.last.size > 0) //看最新的segment,即真正被写入的,是否有数据(Segment.size取出segment中log的bytes)
offsetTimeArray = new Array[(Long, Long)](segsArray.length + 1)
else
offsetTimeArray = new Array[(Long, Long)](segsArray.length) for(i <- 0 until segsArray.length)
offsetTimeArray(i) = (segsArray(i).baseOffset, segsArray(i).lastModified) //对每个segment, 生成(baseOffset,最后更新的时间)
if(segsArray.last.size > 0)
offsetTimeArray(segsArray.length) = (log.logEndOffset, SystemTime.milliseconds) //对于最新的segment逻辑不同,这里取的是log.logEndOffset,有点tricky,因为只有取latest offset时才会取到最后这个 var startIndex = -1
timestamp match {
case OffsetRequest.LatestTime =>
startIndex = offsetTimeArray.length - 1 //Latest,取的其实是log.logEndOffset
case OffsetRequest.EarliestTime =>
startIndex = 0 //earlist, 取的是第一个segment的baseOffset
case _ => //对某一个时间,去offset
var isFound = false
debug("Offset time array = " + offsetTimeArray.foreach(o => "%d, %d".format(o._1, o._2)))
startIndex = offsetTimeArray.length - 1
while (startIndex >= 0 && !isFound) { //从最后一个segment开始,向前遍历
if (offsetTimeArray(startIndex)._2 <= timestamp) //找到小于等于timestamp的segment
isFound = true
else
startIndex -=1
}
} val retSize = maxNumOffsets.min(startIndex + 1) //选择返回几个offset
val ret = new Array[Long](retSize)
for(j <- 0 until retSize) {
ret(j) = offsetTimeArray(startIndex)._1 //返回当前segment,往前的所有segment的baseoffset
startIndex -= 1
}
// ensure that the returned seq is in descending order of offsets
ret.toSeq.sortBy(- _)
}
handleProducerOrOffsetCommitRequest
这个用于处理Producer的请求,其实就是写数据
名字有些tricky,和offsetCommit有什么关系,因为对于kafka的highlevel consumer,consumeroffset是被写入kafka topic的,所以offsetCommitRequest其实就是一种特殊的producer request
你看他实际也是,用producerRequestFromOffsetCommit,将它转换成了producer request
主要调用appendToLocalLog,核心逻辑
val partitionOpt = replicaManager.getPartition(topicAndPartition.topic, topicAndPartition.partition) //取到partition,如果没有找到,抛异常
val info = partitionOpt match {
case Some(partition) =>
partition.appendMessagesToLeader(messages.asInstanceOf[ByteBufferMessageSet],producerRequest.requiredAcks) //将数据写入
case None => throw new UnknownTopicOrPartitionException("Partition %s doesn't exist on %d"
.format(topicAndPartition, brokerId))
}
Partition.appendMessagesToLeader
def appendMessagesToLeader(messages: ByteBufferMessageSet, requiredAcks: Int=0) = {
inReadLock(leaderIsrUpdateLock) {
val leaderReplicaOpt = leaderReplicaIfLocal() //是否是leader replica
leaderReplicaOpt match {
case Some(leaderReplica) =>
val log = leaderReplica.log.get //取得replica.log
val minIsr = log.config.minInSyncReplicas //配置的最小isr的size
val inSyncSize = inSyncReplicas.size //当前isr真实的size // Avoid writing to leader if there are not enough insync replicas to make it safe
if (inSyncSize < minIsr && requiredAcks == -1) {
throw new NotEnoughReplicasException("Number of insync replicas for partition [%s,%d] is [%d], below required minimum [%d]"
.format(topic,partitionId,minIsr,inSyncSize))
} val info = log.append(messages, assignOffsets = true) //将message append到log
// 当有新数据产生了,需要去触发delayedFetchRequest,consumer的fetch request当达到log end offset的时候是会block的,所以这里需要unblock
// probably unblock some follower fetch requests since log end offset has been updated
replicaManager.unblockDelayedFetchRequests(new TopicAndPartition(this.topic, this.partitionId))
// we may need to increment high watermark since ISR could be down to 1
maybeIncrementLeaderHW(leaderReplica) //增加HW
info
case None => //如果找不到leader,往往是因为发生了迁移
throw new NotLeaderForPartitionException("Leader not local for partition [%s,%d] on broker %d"
.format(topic, partitionId, localBrokerId))
}
}
}
对于producer的写策略,取决于配置的acker机制,
acks = 0,那没有failover处理的,发就发了
acks = 1,当写leader replica成功后就返回,其他的replica都是通过fetcher去同步的,所以kafka是异步写
不过有数据丢失的风险,如果leader的数据没有来得及同步,leader挂了,那么会丢失数据
acks = –1, 要等待所有的replicas都成功后,才能返回
所以这里需要产生DelayedProducerRequest,这个request只有在所有的follower都fetch成功后才能reponse
所以DelayedProducerRequest会在fetch request中被触发unblock
if(produceRequest.requiredAcks == 0) {
//acks == 0,即不需要ack,没啥需要特别做的
} else if (produceRequest.requiredAcks == 1 || //acks == 1,即需要立即返回response
produceRequest.numPartitions <= 0 || //没有要求取数据,因为request里面的partition数为0
numPartitionsInError == produceRequest.numPartitions) { //所有的partition都取失败了
//这几种情况都需要立即返回
requestChannel.sendResponse(new RequestChannel.Response(request, new BoundedByteBufferSend(response)))
} else { //这个地方没加注释,应该是ack == -1的情况
// create a list of (topic, partition) pairs to use as keys for this delayed request
val producerRequestKeys = produceRequest.data.keys.toSeq
val statuses = localProduceResults.map(r =>
r.key -> DelayedProduceResponseStatus(r.end + 1, ProducerResponseStatus(r.errorCode, r.start))).toMap
val delayedRequest = new DelayedProduce(
producerRequestKeys,
request,
produceRequest.ackTimeoutMs.toLong,
produceRequest,
statuses,
offsetCommitRequestOpt) // add the produce request for watch if it's not satisfied, otherwise send the response back
val satisfiedByMe = producerRequestPurgatory.checkAndMaybeWatch(delayedRequest)
if (satisfiedByMe)
producerRequestPurgatory.respond(delayedRequest)
}
handleFetchRequest
响应读数据的请求,来自consumer或follower fetcher
def handleFetchRequest(request: RequestChannel.Request) {
val fetchRequest = request.requestObj.asInstanceOf[FetchRequest]
val dataRead = replicaManager.readMessageSets(fetchRequest) //从replicaManager读出数据 // if the fetch request comes from the follower,
// update its corresponding log end offset
if(fetchRequest.isFromFollower) //如果是follower的fetch request,更新follower的leo,还可能需要更新ISR
recordFollowerLogEndOffsets(fetchRequest.replicaId, dataRead.mapValues(_.offset)) // check if this fetch request can be satisfied right away
val bytesReadable = dataRead.values.map(_.data.messages.sizeInBytes).sum
val errorReadingData = dataRead.values.foldLeft(false)((errorIncurred, dataAndOffset) =>
errorIncurred || (dataAndOffset.data.error != ErrorMapping.NoError))
//fetch request是可以delay的,但满足如下要求时是需要立刻返回
// send the data immediately if 1) fetch request does not want to wait
// 2) fetch request does not require any data
// 3) has enough data to respond
// 4) some error happens while reading data
if(fetchRequest.maxWait <= 0 || //不想等
fetchRequest.numPartitions <= 0 || //没有请求数据
bytesReadable >= fetchRequest.minBytes || //读到的数据已足够
errorReadingData) { //有异常
debug("Returning fetch response %s for fetch request with correlation id %d to client %s"
.format(dataRead.values.map(_.data.error).mkString(","), fetchRequest.correlationId, fetchRequest.clientId))
val response = new FetchResponse(fetchRequest.correlationId, dataRead.mapValues(_.data))
requestChannel.sendResponse(new RequestChannel.Response(request, new FetchResponseSend(response)))
} else { //否则产生delay fetcher request,比如没新数据的时候,后续有数据时会unblock这些request
debug("Putting fetch request with correlation id %d from client %s into purgatory".format(fetchRequest.correlationId,
fetchRequest.clientId))
// create a list of (topic, partition) pairs to use as keys for this delayed request
val delayedFetchKeys = fetchRequest.requestInfo.keys.toSeq
val delayedFetch = new DelayedFetch(delayedFetchKeys, request, fetchRequest.maxWait, fetchRequest,
dataRead.mapValues(_.offset)) // add the fetch request for watch if it's not satisfied, otherwise send the response back
val satisfiedByMe = fetchRequestPurgatory.checkAndMaybeWatch(delayedFetch)
if (satisfiedByMe)
fetchRequestPurgatory.respond(delayedFetch)
}
}
readMessageSets其实就是对每个topicAndPartititon调用readMessageSet
private def readMessageSet(topic: String,
partition: Int,
offset: Long,
maxSize: Int,
fromReplicaId: Int): (FetchDataInfo, Long) = {
// check if the current broker is the leader for the partitions
val localReplica = if(fromReplicaId == Request.DebuggingConsumerId)
getReplicaOrException(topic, partition)
else
getLeaderReplicaIfLocal(topic, partition) //判断是否是leader,非leader也不能响应fetch请求
trace("Fetching log segment for topic, partition, offset, size = " + (topic, partition, offset, maxSize))
//我的理解,fromReplicaId只有从follower来的fetch请求才会有
val maxOffsetOpt =
if (Request.isValidBrokerId(fromReplicaId))
None //从follower来的fetch请求,不需要设最大的offset,有多少读多少好了
else //对于普通的fetch请求,不能读超出hw offset
Some(localReplica.highWatermark.messageOffset)
val fetchInfo = localReplica.log match {
case Some(log) =>
log.read(offset, maxSize, maxOffsetOpt)
case None =>
error("Leader for partition [%s,%d] does not have a local log".format(topic, partition))
FetchDataInfo(LogOffsetMetadata.UnknownOffsetMetadata, MessageSet.Empty)
}
(fetchInfo, localReplica.highWatermark.messageOffset)
}
如果是follower fetch request,需要做recordFollowerLogEndOffsets更新follower的leo,
private def recordFollowerLogEndOffsets(replicaId: Int, offsets: Map[TopicAndPartition, LogOffsetMetadata]) {
debug("Record follower log end offsets: %s ".format(offsets))
offsets.foreach {
case (topicAndPartition, offset) =>
replicaManager.updateReplicaLEOAndPartitionHW(topicAndPartition.topic, //更新LEO和HW
topicAndPartition.partition, replicaId, offset)
//当一次follower fetch成功后,需要check之前的delayedProduceRequest是否可以response
//因为ack=-1时,需要所有的follower都fetch成功后才能response
// for producer requests with ack = -1, we need to check
// if they can be unblocked after some follower's log end offsets have moved
replicaManager.unblockDelayedProduceRequests(topicAndPartition)
}
}
最终调用到ReplicaManager.updateReplicaLEOAndPartitionHW,并修正改partition的ISR
def updateReplicaLEOAndPartitionHW(topic: String, partitionId: Int, replicaId: Int, offset: LogOffsetMetadata) = {
getPartition(topic, partitionId) match {
case Some(partition) =>
partition.getReplica(replicaId) match {
case Some(replica) =>
replica.logEndOffset = offset //将follower的replica的leo设为当前取得的offset
// check if we need to update HW and expand Isr
partition.updateLeaderHWAndMaybeExpandIsr(replicaId) //更新ISR
debug("Recorded follower %d position %d for partition [%s,%d].".format(replicaId, offset.messageOffset, topic, partitionId))
case None =>
throw new NotAssignedReplicaException(("Leader %d failed to record follower %d's position %d since the replica" +
" is not recognized to be one of the assigned replicas %s for partition [%s,%d]").format(localBrokerId, replicaId,
offset.messageOffset, partition.assignedReplicas().map(_.brokerId).mkString(","), topic, partitionId)) }
case None =>
warn("While recording the follower position, the partition [%s,%d] hasn't been created, skip updating leader HW".format(topic, partitionId))
}
}
最终调到partition.updateLeaderHWAndMaybeExpandIsr来更新ISR
def updateLeaderHWAndMaybeExpandIsr(replicaId: Int) {
inWriteLock(leaderIsrUpdateLock) {
// check if this replica needs to be added to the ISR
leaderReplicaIfLocal() match { //只有当前的replica是leader,才能更新ISR
case Some(leaderReplica) =>
val replica = getReplica(replicaId).get
val leaderHW = leaderReplica.highWatermark
// For a replica to get added back to ISR, it has to satisfy 3 conditions- //满足下面3条就需要加到ISR中
// 1. It is not already in the ISR
// 2. It is part of the assigned replica list. See KAFKA-1097
// 3. It's log end offset >= leader's high watermark
if (!inSyncReplicas.contains(replica) && //本身不在ISR中
assignedReplicas.map(_.brokerId).contains(replicaId) && //在AR中
replica.logEndOffset.offsetDiff(leaderHW) >= 0) { //当前的leo大于leader的HW, 说明已经追上了
// expand ISR
val newInSyncReplicas = inSyncReplicas + replica //扩展ISR
info("Expanding ISR for partition [%s,%d] from %s to %s"
.format(topic, partitionId, inSyncReplicas.map(_.brokerId).mkString(","), newInSyncReplicas.map(_.brokerId).mkString(",")))
// update ISR in ZK and cache
updateIsr(newInSyncReplicas) //把ISR更新到zk
replicaManager.isrExpandRate.mark()
}
maybeIncrementLeaderHW(leaderReplica) 增加hw
case None => // nothing to do if no longer leader
}
}
}
maybeIncrementLeaderHW
private def maybeIncrementLeaderHW(leaderReplica: Replica) {
val allLogEndOffsets = inSyncReplicas.map(_.logEndOffset) //取出ISR中所有replica的leo列表
val newHighWatermark = allLogEndOffsets.min(new LogOffsetMetadata.OffsetOrdering) //取最小的作为新的hw,这样可以保证只有在所有replica都完成同步的offset,才会设为hw
val oldHighWatermark = leaderReplica.highWatermark //当前旧的hw
if(oldHighWatermark.precedes(newHighWatermark)) { //判断新的hw一定要大于就的hw
leaderReplica.highWatermark = newHighWatermark //更新hw
debug("High watermark for partition [%s,%d] updated to %s".format(topic, partitionId, newHighWatermark))
// some delayed requests may be unblocked after HW changed
val requestKey = new TopicAndPartition(this.topic, this.partitionId)
replicaManager.unblockDelayedFetchRequests(requestKey) //hw变化,触发unblockDelayedFetch很容易理解,有新数据,你之前block的读请求,可以继续读数据
replicaManager.unblockDelayedProduceRequests(requestKey) //也触发unblock DelayedProduce,hw变化表示有数据完成所有replica同步,这样可以reponse produce request
} else {
debug("Skipping update high watermark since Old hw %s is larger than new hw %s for partition [%s,%d]. All leo's are %s"
.format(oldHighWatermark, newHighWatermark, topic, partitionId, allLogEndOffsets.mkString(",")))
}
}
handleControlledShutdownRequest
响应broker发来的shutdown请求,
def handleControlledShutdownRequest(request: RequestChannel.Request) {
val controlledShutdownRequest = request.requestObj.asInstanceOf[ControlledShutdownRequest]
val partitionsRemaining = controller.shutdownBroker(controlledShutdownRequest.brokerId)
val controlledShutdownResponse = new ControlledShutdownResponse(controlledShutdownRequest.correlationId,
ErrorMapping.NoError, partitionsRemaining)
requestChannel.sendResponse(new Response(request, new BoundedByteBufferSend(controlledShutdownResponse)))
}
单纯的调用,controller.shutdownBroker,这种是优雅的shutdown,会做很多的准备工作
def shutdownBroker(id: Int) : Set[TopicAndPartition] = { if (!isActive()) { //如果当前broker不是controller,抛异常退出
throw new ControllerMovedException("Controller moved to another broker. Aborting controlled shutdown")
} controllerContext.brokerShutdownLock synchronized {
info("Shutting down broker " + id) inLock(controllerContext.controllerLock) {
if (!controllerContext.liveOrShuttingDownBrokerIds.contains(id)) //如果broker不存在,抛异常
throw new BrokerNotAvailableException("Broker id %d does not exist.".format(id)) controllerContext.shuttingDownBrokerIds.add(id) //将broker加入真正shuttingDown的broker list
debug("All shutting down brokers: " + controllerContext.shuttingDownBrokerIds.mkString(","))
debug("Live brokers: " + controllerContext.liveBrokerIds.mkString(","))
} val allPartitionsAndReplicationFactorOnBroker: Set[(TopicAndPartition, Int)] = //找出broker上所有的partition和replica
inLock(controllerContext.controllerLock) {
controllerContext.partitionsOnBroker(id)
.map(topicAndPartition => (topicAndPartition, controllerContext.partitionReplicaAssignment(topicAndPartition).size))
} allPartitionsAndReplicationFactorOnBroker.foreach {
case(topicAndPartition, replicationFactor) =>
// Move leadership serially to relinquish lock.
inLock(controllerContext.controllerLock) {
controllerContext.partitionLeadershipInfo.get(topicAndPartition).foreach { currLeaderIsrAndControllerEpoch =>
if (replicationFactor > 1) { //如果打开副本机制,=1就是没有副本
if (currLeaderIsrAndControllerEpoch.leaderAndIsr.leader == id) { //如果是leader
// If the broker leads the topic partition, transition the leader and update isr. Updates zk and
// notifies all affected brokers
partitionStateMachine.handleStateChanges(Set(topicAndPartition), OnlinePartition,
controlledShutdownPartitionLeaderSelector) //主动做leader重新选举
} else { //如果该broker上的replica不是leader,发送stopReplicas请求
// Stop the replica first. The state change below initiates ZK changes which should take some time
// before which the stop replica request should be completed (in most cases)
brokerRequestBatch.newBatch()
brokerRequestBatch.addStopReplicaRequestForBrokers(Seq(id), topicAndPartition.topic,
topicAndPartition.partition, deletePartition = false)
brokerRequestBatch.sendRequestsToBrokers(epoch, controllerContext.correlationId.getAndIncrement) // If the broker is a follower, updates the isr in ZK and notifies the current leader
replicaStateMachine.handleStateChanges(Set(PartitionAndReplica(topicAndPartition.topic,
topicAndPartition.partition, id)), OfflineReplica)
}
}
}
}
}
def replicatedPartitionsBrokerLeads() = inLock(controllerContext.controllerLock) {
trace("All leaders = " + controllerContext.partitionLeadershipInfo.mkString(","))
controllerContext.partitionLeadershipInfo.filter {
case (topicAndPartition, leaderIsrAndControllerEpoch) =>
leaderIsrAndControllerEpoch.leaderAndIsr.leader == id && controllerContext.partitionReplicaAssignment(topicAndPartition).size > 1
}.map(_._1)
}
replicatedPartitionsBrokerLeads().toSet
}
}
这里做leader重新选举用的是controlledShutdownPartitionLeaderSelector
这个选举策略很简单,
排除了shuttingDownBroker的产生新的ISR,然后选择head作为新的leader
val newIsr = currentLeaderAndIsr.isr.filter(brokerId => !controllerContext.shuttingDownBrokerIds.contains(brokerId))
val newLeaderOpt = newIsr.headOption
handleTopicMetadataRequest,handleUpdateMetadataRequest
就是处理读取和更新MetadataCache的请求,
KafkaApis.metadataCache
首先看看MetaCache是什么?
/**
* A cache for the state (e.g., current leader) of each partition. This cache is updated through
* UpdateMetadataRequest from the controller. Every broker maintains the same cache, asynchronously.
*/
private[server] class MetadataCache {
private val cache: mutable.Map[String, mutable.Map[Int, PartitionStateInfo]] =
new mutable.HashMap[String, mutable.Map[Int, PartitionStateInfo]]()
private var aliveBrokers: Map[Int, Broker] = Map()
private val partitionMetadataLock = new ReentrantReadWriteLock()
可见cache为,Map[String, mutable.Map[Int, PartitionStateInfo],记录每个topic,每个partition的PartitionStateInfo
case class PartitionStateInfo(val leaderIsrAndControllerEpoch: LeaderIsrAndControllerEpoch,
val allReplicas: Set[Int])
包含,leaderIsrAndControllerEpoch,记录leader和isr
allReplicas记录所有的replicas,即AR,注意这里只会记录replica id,replica的具体情况,只会在replicaManager里面记录
这里为每个partition记录leaderIsrAndControllerEpoch,是不是有点浪费
而aliveBrokers,记录所有活的brokers的id和ip:port
所以也比较简单,这个cache在每个brokers之间是会被异步更新的,通过handleUpdateMetadataRequest
handleStopReplicaRequest
停止replica请求,一般是当broker stop或需要删除某replica时被调用
处理很简单,主要就是停止fetcher线程,并删除partition目录
stopReplicas
def stopReplicas(stopReplicaRequest: StopReplicaRequest): (mutable.Map[TopicAndPartition, Short], Short) = {
replicaStateChangeLock synchronized { // 加锁
val responseMap = new collection.mutable.HashMap[TopicAndPartition, Short]
if(stopReplicaRequest.controllerEpoch < controllerEpoch) { // 检查Epoch,防止收到过期的request
(responseMap, ErrorMapping.StaleControllerEpochCode)
} else {
controllerEpoch = stopReplicaRequest.controllerEpoch // 更新Epoch
// First stop fetchers for all partitions, then stop the corresponding replicas
replicaFetcherManager.removeFetcherForPartitions(stopReplicaRequest.partitions.map(r => TopicAndPartition(r.topic, r.partition))) // 先通过FetcherManager停止相关partition的Fetcher线程
for(topicAndPartition <- stopReplicaRequest.partitions){
val errorCode = stopReplica(topicAndPartition.topic, topicAndPartition.partition, stopReplicaRequest.deletePartitions) // 调用stopReplica
responseMap.put(topicAndPartition, errorCode)
}
(responseMap, ErrorMapping.NoError)
}
}
}
stopReplica,注意很多情况下是不需要真正删除replica的,比如宕机
def stopReplica(topic: String, partitionId: Int, deletePartition: Boolean): Short = {
getPartition(topic, partitionId) match {
case Some(partition) =>
leaderPartitionsLock synchronized {
leaderPartitions -= partition
}
if(deletePartition) { // 仅仅在deletePartition=true时,才会真正删除该partition
val removedPartition = allPartitions.remove((topic, partitionId))
if (removedPartition != null)
removedPartition.delete() // this will delete the local log
}
case None => //do nothing if replica no longer exists. This can happen during delete topic retries
}
}
handleLeaderAndIsrRequest
处理leaderAndIsr的更新,这个和handleUpdateMetadataRequest的区别是,不光更新cache,需要真正去做replica的leader切换
主要调用,
replicaManager.becomeLeaderOrFollower(leaderAndIsrRequest, offsetManager)
核心逻辑如下,前面那段主要是判断这个request是否有效,根据controllerEpoch和leaderEpoch
def becomeLeaderOrFollower(leaderAndISRRequest: LeaderAndIsrRequest): (collection.Map[(String, Int), Short], Short) = {
replicaStateChangeLock synchronized {// 加锁
val responseMap = new collection.mutable.HashMap[(String, Int), Short]
if(leaderAndISRRequest.controllerEpoch < controllerEpoch) { // 检查requset epoch
(responseMap, ErrorMapping.StaleControllerEpochCode)
} else {
val controllerId = leaderAndISRRequest.controllerId
val correlationId = leaderAndISRRequest.correlationId
controllerEpoch = leaderAndISRRequest.controllerEpoch // First check partition's leader epoch
// 前面只是检查了request的epoch,但是还要检查其中的每个partitionStateInfo中的leader epoch
val partitionState = new HashMap[Partition, PartitionStateInfo]()
leaderAndISRRequest.partitionStateInfos.foreach{ case ((topic, partitionId), partitionStateInfo) =>
val partition = getOrCreatePartition(topic, partitionId, partitionStateInfo.replicationFactor) // get或创建partition,partition只是逻辑存在,所以也是创建partition对象
val partitionLeaderEpoch = partition.getLeaderEpoch()
// If the leader epoch is valid record the epoch of the controller that made the leadership decision.
// This is useful while updating the isr to maintain the decision maker controller's epoch in the zookeeper path
if (partitionLeaderEpoch < partitionStateInfo.leaderIsrAndControllerEpoch.leaderAndIsr.leaderEpoch) { // local的partitionLeaderEpoch要小于request中的leaderEpoch,否则就是过时的request
if(partitionStateInfo.allReplicas.contains(config.brokerId)) // 判断该partition是否被assigned给当前的broker
partitionState.put(partition, partitionStateInfo) // 只将被分配到当前broker的partition放入partitionState,其中partition是当前的状况,partitionStateInfo是request中最新的状况
else { }
} else { // Received invalid LeaderAndIsr request
// Otherwise record the error code in response
responseMap.put((topic, partitionId), ErrorMapping.StaleLeaderEpochCode)
}
} //核心逻辑,判断是否为leader或follower,分别调用makeLeaders和makeFollowers
val partitionsTobeLeader = partitionState //从partitionState中筛选出以该broker为leader replica的
.filter{ case (partition, partitionStateInfo) => partitionStateInfo.leaderIsrAndControllerEpoch.leaderAndIsr.leader == config.brokerId}
val partitionsToBeFollower = (partitionState -- partitionsTobeLeader.keys) if (!partitionsTobeLeader.isEmpty) makeLeaders(controllerId, controllerEpoch, partitionsTobeLeader, leaderAndISRRequest.correlationId, responseMap)
if (!partitionsToBeFollower.isEmpty) makeFollowers(controllerId, controllerEpoch, partitionsToBeFollower, leaderAndISRRequest.leaders, leaderAndISRRequest.correlationId, responseMap) // we initialize highwatermark thread after the first leaderisrrequest. This ensures that all the partitions
// have been completely populated before starting the checkpointing there by avoiding weird race conditions
if (!hwThreadInitialized) {
startHighWaterMarksCheckPointThread() // 启动HighWaterMarksCheckPointThread,hw很重要,需要定期存到磁盘,这样failover的时候可以重新load
hwThreadInitialized = true
}
replicaFetcherManager.shutdownIdleFetcherThreads() //关闭idle的fether,如果成为leader,就不需要fetch
(responseMap, ErrorMapping.NoError)
}
}
}
replicaManager里面有个allPartitions,记录所有partition的情况,
private val allPartitions = new Pool[(String, Int), Partition]
其中Partition结构中,比较主要的数据是,
private val assignedReplicaMap = new Pool[Int, Replica]
这个记录brokerid和replica的对应关系
def getOrCreatePartition(topic: String, partitionId: Int): Partition = {
var partition = allPartitions.get((topic, partitionId))
if (partition == null) {
allPartitions.putIfNotExists((topic, partitionId), new Partition(topic, partitionId, time, this))
partition = allPartitions.get((topic, partitionId))
}
partition
}
所以getOrCreatePartition,只是get当前replicaManager里面保存的该partiiton的情况
replicaManager.makeLeaders
关闭所有成为leader的replica对应的fetcher,然后关键是调用,
// Update the partition information to be the leader
partitionState.foreach{ case (partition, partitionStateInfo) =>
partition.makeLeader(controllerId, partitionStateInfo, correlationId)}
上面提到case (partition, partitionStateInfo)中,partition是replicaManager当前的情况,而partitionStateInfo中间放的是request的新的分配情况,
def makeLeader(controllerId: Int,
partitionStateInfo: PartitionStateInfo, correlationId: Int,
offsetManager: OffsetManager): Boolean = {
inWriteLock(leaderIsrUpdateLock) {
val allReplicas = partitionStateInfo.allReplicas
val leaderIsrAndControllerEpoch = partitionStateInfo.leaderIsrAndControllerEpoch
val leaderAndIsr = leaderIsrAndControllerEpoch.leaderAndIsr
// record the epoch of the controller that made the leadership decision. This is useful while updating the isr
// to maintain the decision maker controller's epoch in the zookeeper path
controllerEpoch = leaderIsrAndControllerEpoch.controllerEpoch
// add replicas that are new
allReplicas.foreach(replica => getOrCreateReplica(replica)) //request中allReplicas
val newInSyncReplicas = leaderAndIsr.isr.map(r => getOrCreateReplica(r)).toSet //request中ISR中的所有replicas
// remove assigned replicas that have been removed by the controller
// assignedReplicas表示当前partition分配情况,需要根据allReplicas更新,如果replicaid不在allReplicas中,则需要从assignedReplicas中删除
(assignedReplicas().map(_.brokerId) -- allReplicas).foreach(removeReplica(_))
inSyncReplicas = newInSyncReplicas // 用request中的数据来更新当前partition中的
leaderEpoch = leaderAndIsr.leaderEpoch
zkVersion = leaderAndIsr.zkVersion
leaderReplicaIdOpt = Some(localBrokerId)
// construct the high watermark metadata for the new leader replica
val newLeaderReplica = getReplica().get
newLeaderReplica.convertHWToLocalOffsetMetadata() //对于新建的replica,只有offset,需要从log读取一下metadata
// reset log end offset for remote replicas
// 理解这,关键知道leo什么时候被更新的,leo只有当follower成功fetch leader的数据时,才会更新leader.assignedReplicas.getReplica.leo
// 所以这里需要把leo给reset,因为如果有数据,可能是上次该broker称为leader时的遗留数据
assignedReplicas.foreach(r => if (r.brokerId != localBrokerId) r.logEndOffset = LogOffsetMetadata.UnknownOffsetMetadata)
// 上面把所有remote replica的leo重置了成UnknownOffsetMetadata(-1),那么在maybeIncrementLeaderHW中会取所有replica中最小的leo,如果除leader外有其他replica,因为刚被重置过,最小leo一定是-1
// -1一定小于当前的hw,所以hw其实不会被increment。只有当isr中只有leader时,那hw会被increment到leader.leo
maybeIncrementLeaderHW(newLeaderReplica)
if (topic == OffsetManager.OffsetsTopicName)
offsetManager.loadOffsetsFromLog(partitionId)
true
}
}
这里还有个函数getOrCreateReplica,知道两点,
a. 在这里当local replica不存在的时候,会真正的创建replica
b. 所有生成replica都是用这个函数,所以其他的replica list都是assignedReplicaMap中replica的引用,比如inSyncReplicas
def getOrCreateReplica(replicaId: Int = localBrokerId): Replica = {
val replicaOpt = getReplica(replicaId)//assignedReplicaMap.get(replicaId)
replicaOpt match {
case Some(replica) => replica
case None =>
if (isReplicaLocal(replicaId)) { //如果是local,并且在AR中没有,那么需要创建这个replica
val config = LogConfig.fromProps(logManager.defaultConfig.toProps, AdminUtils.fetchTopicConfig(zkClient, topic))
val log = logManager.createLog(TopicAndPartition(topic, partitionId), config) //真正的创建replica文件
val checkpoint = replicaManager.highWatermarkCheckpoints(log.dir.getParentFile.getAbsolutePath) //需要读出hw checkpoint
val offsetMap = checkpoint.read
if (!offsetMap.contains(TopicAndPartition(topic, partitionId)))
warn("No checkpointed highwatermark is found for partition [%s,%d]".format(topic, partitionId))
val offset = offsetMap.getOrElse(TopicAndPartition(topic, partitionId), 0L).min(log.logEndOffset) //读出hw,和loe求min,防止hw大于loe
val localReplica = new Replica(replicaId, this, time, offset, Some(log))
addReplicaIfNotExists(localReplica)
} else { //
val remoteReplica = new Replica(replicaId, this, time)
addReplicaIfNotExists(remoteReplica)
}
getReplica(replicaId).get
}
}
replicaManager.makeFollowers
var partitionsToMakeFollower: Set[Partition] = Set() //记录leader发生变化的partition
//调用partition.makeFollower
if (partition.makeFollower(controllerId, partitionStateInfo, correlationId, offsetManager)) // 仅仅当partition的leader发生变化时才返回true,因为如果不变,不需要做任何操作
partitionsToMakeFollower += partition
//由于leader已发生变化,需要把旧的fetcher删除
replicaFetcherManager.removeFetcherForPartitions(partitionsToMakeFollower.map(new TopicAndPartition(_))) //由于leader已发生变化,所以之前和旧leader同步的数据可能和新的leader是不一致的,但hw以下的数据,大家都是一致的,所以就把hw以上的数据truncate掉,防止不一致
logManager.truncateTo(partitionsToMakeFollower.map(partition => (new TopicAndPartition(partition), partition.getOrCreateReplica().highWatermark.messageOffset)).toMap) if (isShuttingDown.get()) {
//真正shuttingDown,就不要再加fetcher
}
else {
// we do not need to check if the leader exists again since this has been done at the beginning of this process
val partitionsToMakeFollowerWithLeaderAndOffset = partitionsToMakeFollower.map(partition => //
new TopicAndPartition(partition) -> BrokerAndInitialOffset(
leaders.find(_.id == partition.leaderReplicaIdOpt.get).get,
partition.getReplica().get.logEndOffset.messageOffset)).toMap replicaFetcherManager.addFetcherForPartitions(partitionsToMakeFollowerWithLeaderAndOffset) //增加新的fetcher
}
partition.makeFollower
比较简单,只是更新assignedReplicas和ISR
def makeFollower(controllerId: Int,
partitionStateInfo: PartitionStateInfo,
correlationId: Int, offsetManager: OffsetManager): Boolean = {
inWriteLock(leaderIsrUpdateLock) {
val allReplicas = partitionStateInfo.allReplicas
val leaderIsrAndControllerEpoch = partitionStateInfo.leaderIsrAndControllerEpoch
val leaderAndIsr = leaderIsrAndControllerEpoch.leaderAndIsr
val newLeaderBrokerId: Int = leaderAndIsr.leader
// record the epoch of the controller that made the leadership decision. This is useful while updating the isr
// to maintain the decision maker controller's epoch in the zookeeper path
controllerEpoch = leaderIsrAndControllerEpoch.controllerEpoch
// add replicas that are new
allReplicas.foreach(r => getOrCreateReplica(r))
// remove assigned replicas that have been removed by the controller
(assignedReplicas().map(_.brokerId) -- allReplicas).foreach(removeReplica(_))
inSyncReplicas = Set.empty[Replica] // 将isr置空,不同于makeLeader
leaderEpoch = leaderAndIsr.leaderEpoch
zkVersion = leaderAndIsr.zkVersion if (leaderReplicaIdOpt.isDefined && leaderReplicaIdOpt.get == newLeaderBrokerId) { // 判断replica leader是否发生了变化
false
}
else {
leaderReplicaIdOpt = Some(newLeaderBrokerId) // 如果发生变化,则更新leader
true
}
}
}
Apache Kafka源码分析 - KafkaApis的更多相关文章
- Apache Kafka源码分析 – Broker Server
1. Kafka.scala 在Kafka的main入口中startup KafkaServerStartable, 而KafkaServerStartable这是对KafkaServer的封装 1: ...
- apache kafka源码分析-Producer分析---转载
原文地址:http://www.aboutyun.com/thread-9938-1-1.html 问题导读1.Kafka提供了Producer类作为java producer的api,此类有几种发送 ...
- Apache Kafka源码分析 - kafka controller
前面已经分析过kafka server的启动过程,以及server所能处理的所有的request,即KafkaApis 剩下的,其实关键就是controller,以及partition和replica ...
- Apache Kafka源码分析 – Controller
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Controller+Internalshttps://cwiki.apache.org ...
- Apache Kafka源码分析 – Log Management
LogManager LogManager会管理broker上所有的logs(在一个log目录下),一个topic的一个partition对应于一个log(一个log子目录)首先loadLogs会加载 ...
- Apache Kafka源码分析 - autoLeaderRebalanceEnable
在broker的配置中,auto.leader.rebalance.enable (false) 那么这个leader是如何进行rebalance的? 首先在controller启动的时候会打开一个s ...
- Apache Kafka源码分析 – Replica and Partition
Replica 对于local replica, 需要记录highWatermarkValue,表示当前已经committed的数据对于remote replica,需要记录logEndOffsetV ...
- Apache Kafka源码分析 – ReplicaManager
如果说controller作为master,负责全局的事情,比如选取leader,reassignment等那么ReplicaManager就是worker,负责完成replica的管理工作 主要工作 ...
- Apache Kafka源码分析 - ReplicaStateMachine
startup 在onControllerFailover中被调用, /** * Invoked on successful controller election. First registers ...
随机推荐
- Session: 防止用户多次登陆
在web开发时,有的系统要求同一个用户在同一时间只能登录一次,也就是如果一个用户已经登录了,在退出之前如果再次登录的话需要报错. 常见的处理方法是,在用户登录时,判断此用户是否已经在Applicati ...
- HTML-a
链接的其他使用 电话 <a href="tel:(phonenumber)">Tel</a> 短信 <a href="sms:(phonen ...
- AppleWatch开发教程之Watch应用对象新增内容介绍以及编写运行代码
AppleWatch开发教程之Watch应用对象新增内容介绍以及编写运行代码 添加Watch应用对象时新增内容介绍 Watch应用对象添加到创建的项目中后,会包含两个部分:Watch App 和 Wa ...
- ArduinoYun的电源插座
ArduinoYun的电源插座 Arduino Yun有两排插座,这些插座可以按类型分为三类:电源.数字IO和模拟输入.电源部分主要集中在如图1.7所示的部分本文选自Arduino Yun快速入门教程 ...
- div垂直居中 css div盒子上下垂直居中
div垂直居中 css div盒子上下垂直居中,让DIV盒子在任何浏览器中任何分辨率的显示屏浏览器中处于水平居中和上下垂直居中. div垂直居中常用于单个盒子,如一个页面里只有一个登录布局,使用div ...
- LightOJ1013 Love Calculator(DP)
容易猜测到包含s1.s2序列的串的最短长度是LCS(s1,s2) + ( len(s1) - LCS(s1,s2) ) + ( len(s2) - LCS(s1,s2) ) ,即: len(s1)+l ...
- HDU 5087 (线性DP+次大LIS)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5087 题目大意:求次大LIS的长度.注意两个长度相同的LIS大小比较,下标和大的LIS较大. 解题思 ...
- 发送JS错误日志到服务器
JS记录错误日志/捕捉错误 //onerror提供异常信息,文件路径和发生错误代码的行数的三个参数. window.onerror = function(e,url,index){ var msg = ...
- c++ map和mutimaps 插入值
(1)运用value_type std::map<std::string, float> col1; col1.insert(std::map<std::string,float&g ...
- TYVJ P1026 犁田机器人 Label:水
背景 USACO OCT 09 2ND 描述 Farmer John為了让自己从无穷无尽的犁田工作中解放出来,於是买了个新机器人帮助他犁田.这个机器人可以完成犁田的任务,可惜有一个小小的缺点:这个犁田 ...