1. 二项分布(离散)

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt '''
# 二项分布 (binomial distribution)
# 前提:独立重复试验、有放回、只有两个结果
# 二项分布指出,随机一次试验出现事件A的概率如果为p,那么在重复n次试验中出现k次事件A的概率为:
# f(n,k,p) = choose(n, k) * p**k * (1-p)**(n-k)
''' # ①定义二项分布的基本信息
p = 0.4 # 事件A概率0.4
n = 5 # 重复实验5次
k = np.arange(n+1) # 6种可能出现的结果
#k = np.linspace(stats.binom.ppf(0.01,n,p), stats.binom.ppf(0.99,n,p), n+1) #另一种方式 # ②计算二项分布的概率质量分布 (probability mass function)
# 之所以称为质量,是因为离散的点,默认体积(即宽度)为1
# P(X=x) --> 是概率
probs = stats.binom.pmf(k, n, p)
#array([ 0.07776, 0.2592 , 0.3456 , 0.2304 , 0.0768 , 0.01024])
#plt.plot(k, probs) # ③计算二项分布的累积概率 (cumulative density function)
# P(X<=x) --> 也是概率
cumsum_probs = stats.binom.cdf(k, n, p)
#array([ 0.07776, 0.33696, 0.68256, 0.91296, 0.98976, 1. ]) # ④根据累积概率得到对应的k,这里偷懒,直接用了上面的cumsum_probs
k2 = stats.binom.ppf(cumsum_probs, n, p)
#array([0, 1, 2, 3, 4, 5]) # ⑤伪造符合二项分布的随机变量 (random variates)
X = stats.binom.rvs(n,p,size=20)
#array([2, 3, 1, 2, 2, 2, 1, 2, 2, 3, 3, 0, 1, 1, 1, 2, 3, 4, 0, 3]) #⑧作出上面满足二项分布随机变量的频数直方图(类似group by)
plt.hist(X) #⑨作出上面满足二项分布随机变量的频率分布直方图
plt.hist(X, normed=True)
plt.show()

2. 正态分布(连续)

'''
标准正态分布
密度函数:f(x) = exp(-x**2/2)/sqrt(2*pi) ''' x = np.linspace(stats.norm.ppf(0.01), stats.norm.ppf(0.99), 100) # 概率密度分布函数(Probability density function)
# 之所以称为密度,是因为连续的点,默认体积为0
# f(x) --> 不是概率
probs = norm.pdf(x)
# plt.plot(x, probs, 'r-', lw=5, alpha=0.6, label='norm pdf') # 累积概率密度函数 Cumulative density function
# 定积分 ∫_-oo^a f(x)dx --> 是概率
cumsum_probs = stats.norm.cdf(x) # 伪造符合正态分布的随机变量X
# 通过loc和scale参数可以指定随机变量的偏移和缩放参数。对于正态分布的随机变量来说,这两个参数相当于指定其期望值和标准差:
X = stats.norm.rvs(loc=1.0, scale=2.0, size=1000) #⑨作出上面正态分布随机变量的频率分布直方图
plt.hist(X, normed=True, histtype='stepfilled', alpha=0.2)
plt.legend(loc='best', frameon=False)
plt.show() # 对给定的数据进行参数估计。这里偷懒了,就用上面的X
mean, std = stats.norm.fit(X)
#array(1.01810091), array(2.00046946)

python实现概率分布的更多相关文章

  1. 如何在Python中实现这五类强大的概率分布

    R编程语言已经成为统计分析中的事实标准.但在这篇文章中,我将告诉你在Python中实现统计学概念会是如此容易.我要使用Python实现一些离散和连续的概率分布.虽然我不会讨论这些分布的数学细节,但我会 ...

  2. 概率分布之间的距离度量以及python实现(四)

    1.f 散度(f-divergence) KL-divergence 的坏处在于它是无界的.事实上KL-divergence 属于更广泛的 f-divergence 中的一种. 如果P和Q被定义成空间 ...

  3. 概率分布之间的距离度量以及python实现(三)

    概率分布之间的距离,顾名思义,度量两组样本分布之间的距离 . 1.卡方检验 统计学上的χ2统计量,由于它最初是由英国统计学家Karl Pearson在1900年首次提出的,因此也称之为Pearson ...

  4. 概率分布之间的距离度量以及python实现

    1. 欧氏距离(Euclidean Distance)       欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式.(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧 ...

  5. 概率分布的python实现

    接上篇概率分布,这篇文章讲概率分布在python的实现. 文中的公式使用LaTex语法,即在\begin{equation}至\end{equation}的内容可以在https://www.codec ...

  6. 数理统计(二)——Python中的概率分布API

    数理统计(二)——Python中的概率分布API iwehdio的博客园:https://www.cnblogs.com/iwehdio/ 数理统计中进行假设检验需要查一些分布的上分位数表.在scip ...

  7. 数据科学中的常见的6种概率分布(Python实现)

    作者:Pier Paolo Ippolito@南安普敦大学 编译:机器学习算法与Python实战(微信公众号:tjxj666) 原文:https://towardsdatascience.com/pr ...

  8. Python中的随机采样和概率分布(二)

    在上一篇博文<Python中的随机采样和概率分布(一)>(链接:https://www.cnblogs.com/orion-orion/p/15647408.html)中,我们介绍了Pyt ...

  9. Python中的随机采样和概率分布(一)

    Python(包括其包Numpy)中包含了了许多概率算法,包括基础的随机采样以及许多经典的概率分布生成.我们这个系列介绍几个在机器学习中常用的概率函数.先来看最基础的功能--随机采样. 1. rand ...

随机推荐

  1. Mysql锁初步

    存储引擎 要了解mysql的锁,就要先从存储引擎说起. 常用存储引擎列表如下图所示: 最常使用的两种存储引擎: Myisam是Mysql的默认存储引擎.当create创建新表时,未指定新表的存储引擎时 ...

  2. iOS网络-03-NSURLSession与NSURLSessionTask

    简介 NSURLSession也能完成网络请求 NSURLConnection在iOS9中不推荐使用,NSURLSession是iOS9中推荐使用的网络请求方式 NSURLSession需要与NSUR ...

  3. iOS:交换Button中图片与文字的左右位置

    titleEdgeInsets属性和 imageEdgeInsets属性只是在画这个button出来的时候用来调整image和label位置的属性,并不影响button本身的大小.它们只是image和 ...

  4. 傅里叶:有关FFT,DFT与蝴蝶操作(转 重要!!!!重要!!!!真的很重要!!!!)

    转载地址:http://blog.renren.com/share/408963653/15068964503(作者 :  徐可扬) 有没有!!! 其实我感觉这个学期算法最难最搞不懂的绝对不是动态规划 ...

  5. AOP这些应用场景(交叉业务)

    1.统计某个方法的性能,可以在每个业务方法执行前后 记录方法执行的当前时间,执行后的时间-执行前的时间= 方法执行时间.  这样就可以在开发过程中(项目未交付给客户前)统计程序的性能. 2.安全 ,权 ...

  6. linux+jre+apache+mysql+tomcat调优

    一.不再为Apache进程淤积.耗尽内存而困扰 0. /etc/my.cnf,在mysqld那一段加上如下一行: log-slow-queries=queries-slow.log 重启MySQL 酌 ...

  7. OOD沉思录 --- 类和对象的关系 --- 包含关系2

    4.6 尽量让类中定义的每个方法尽可能多地使用包含的对象(即数据成员) 这其实就是高内聚的翻版强调.如果每个类的情况并非如此,那很可能是这一个类表示了两个或更多的概念,记住一个类只应该表示一个概念. ...

  8. 软件测试Lab2

    1.本次上机实验任务:使用webDriver完后自动化测试 2.本次上机实验目的:掌握webDriver的用法和配置. 3.本次上机实验内容: 3.1Selenium的安装: 首先我们上Seleniu ...

  9. STM32启动文件选择说明

    图1. STM32F10xxx标准外设库体系结构先说这个问题,大家都知道,我们在选择使用哪些外围的的时候,是去更改从官方模版中拷贝过来的stm32f10x_conf.h文件的27-48行,把我们要用的 ...

  10. python datetime模块用strftime 格式化时间

    1 2 3 #!usr/bin/python import datetime datetime.datetime.now() 这个会返回 microsecond.因此这个是我们不需要的.所以得做一下修 ...