7.6 Given a two-dimensional graph with points on it, find a line which passes the most number of points.

这道题给了我们许多点,让我们求经过最多点的一条直线。给之前那道7.5 A Line Cut Two Squares in Half 平均分割两个正方形的直线一样,都需要自己写出点类和直线类。在直线类中,我用我们用斜率和截距来表示直线,为了应对斜率不存在情况,我们还需用一个flag来标记是否为垂直的线。在直线类中,我们要有判断两条直线是否相等的函数。判断相等的方法和之前那道7.3 Line Intersection 直线相交相同,都需要使用epsilon,只要两个数的差值的绝对值小于epsilon,我们就认定是相等的。对于给定的所有点,每两个点能组成一条直线,我们的方法是遍历所有的直线,把所有相同的直线都存入哈希表中,key是直线的斜率,映射关系是斜率和直线集合的映射,那么我们只需找到包含直线最多的那个集合即可,参见代码如下:

class Point {
public:
double _x, _y;
Point(double x, double y): _x(x), _y(y) {};
}; class Line {
public:
static constexpr double _epsilon = 0.0001;
double _slope, _intercept;
bool _infi_slope = false;
Line(Point p, Point q) {
if (fabs(p._x - q._x) > _epsilon) {
_slope = (p._y - q._y) / (p._x - q._x);
_intercept = p._y - _slope * p._x;
} else {
_infi_slope = true;
_intercept = p._x;
}
}
static double floorToNearestEpsilon(double d) {
int r = (int)(d / _epsilon);
return ((double)r) * _epsilon;
}
bool isEquivalent(double a, double b) {
return (fabs(a - b) < _epsilon);
}
bool isEquivalent(Line other) {
if (isEquivalent(_slope, other._slope) && isEquivalent(_intercept, other._intercept) && (_infi_slope == other._infi_slope)) {
return true;
}
return false;
}
}; class Solution {
public:
Line findBestLine(vector<Point> &points) {
Line res(points[], points[]);
int bestCnt = ;
unordered_map<double, vector<Line> > m;
for (int i = ; i < (int)points.size(); ++i) {
for (int j = i + ; j < (int)points.size(); ++j) {
Line line(points[i], points[j]);
insertLine(m, line);
int cnt = countEquivalentLines(m, line);
if (cnt > bestCnt) {
res = line;
bestCnt = cnt;
}
}
}
return res;
}
void insertLine(unordered_map<double, vector<Line> > &m, Line &line) {
vector<Line> lines;
double key = Line::floorToNearestEpsilon(line._slope);
if (m.find(key) != m.end()) {
lines = m[key];
} else {
m[key] = lines;
}
lines.push_back(line);
}
int countEquivalentLines(unordered_map<double, vector<Line> > &m, Line &line) {
double key = Line::floorToNearestEpsilon(line._slope);
double eps = Line::_epsilon;
return countEquivalentLines(m[key], line) + countEquivalentLines(m[key - eps], line) + countEquivalentLines(m[key + eps], line);
}
int countEquivalentLines(vector<Line> &lines, Line &line) {
if (lines.empty()) return ;
int res = ;
for (auto &a : lines) {
if (a.isEquivalent(line)) ++res;
}
return res;
}
};

[CareerCup] 7.6 The Line Passes the Most Number of Points 经过最多点的直线的更多相关文章

  1. [CC150] Find a line passing the most number of points

    Problem: Given a two-dimensional graph with points on it, find a line which passes the most number o ...

  2. [CareerCup] 7.5 A Line Cut Two Squares in Half 平均分割两个正方形的直线

    7.5 Given two squares on a two-dimensional plane, find a line that would cut these two squares in ha ...

  3. [LeetCode OJ] Max Points on a Line—Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.

    //定义二维平面上的点struct Point { int x; int y; Point(, ):x(a),y(b){} }; bool operator==(const Point& le ...

  4. leetcode ex3 找出穿过最多点的直线 Max Points on a Line

    题目 https://oj.leetcode.com/problems/max-points-on-a-line/ 答案与分析 http://www.aiweibang.com/yuedu/18326 ...

  5. CareerCup All in One 题目汇总 (未完待续...)

    Chapter 1. Arrays and Strings 1.1 Unique Characters of a String 1.2 Reverse String 1.3 Permutation S ...

  6. CareerCup All in One 题目汇总

    Chapter 1. Arrays and Strings 1.1 Unique Characters of a String 1.2 Reverse String 1.3 Permutation S ...

  7. Careercup | Chapter 7

    7.4 Write methods to implement the multiply, subtract, and divide operations for integers. Use only ...

  8. 2018浙江省赛(ACM) The 15th Zhejiang Provincial Collegiate Programming Contest Sponsored by TuSimple

    我是铁牌选手 这次比赛非常得爆炸,可以说体验极差,是这辈子自己最脑残的事情之一. 天时,地利,人和一样没有,而且自己早早地就想好了甩锅的套路. 按理说不开K就不会这么惨了啊,而且自己也是毒,不知道段错 ...

  9. iOS: 如何正确的绘制1像素的线

    iOS 绘制1像素的线 一.Point Vs Pixel iOS中当我们使用Quartz,UIKit,CoreAnimation等框架时,所有的坐标系统采用Point来衡量.系统在实际渲染到设置时会帮 ...

随机推荐

  1. 远程连接mysql容易遇到的2个问题

    1."com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: Communications link failure The las ...

  2. WebService学习总结(二)——WebService相关概念介绍

    一.WebService是什么? 1. 基于Web的服务:服务器端整出一些资源让客户端应用访问(获取数据) 2. 一个跨语言.跨平台的规范(抽象) 3. 多个跨平台.跨语言的应用间通信整合的方案(实际 ...

  3. linux把EDT时间修改为CST格式

    初始时间:2012年 09月 14日 星期五 18:15:33 EDT [root@test ~]# mv /etc/localtime /etc/localtime.bak [root@test ~ ...

  4. apache 开启zgip 压缩模式

    一.Apache开启gzip压缩模式在目录apache\conf\httpd.conf 配置 httpd.conf 文件: #去掉LoadModule deflate_module modules/m ...

  5. 读书笔记——Windows核心编程(8)Interlocked单向链式栈

    SLists使用了无锁算法来保证原子同步,以提升系统性能,避免了诸如优先级挂和互锁的问题. 注意:所有的链表项必须对齐到MEMORY_ALLOCATION_ALIGNMENT.否则会出现奇葩的错误. ...

  6. MongoDB 存储引擎Wiredtiger原理剖析

    今天开始看MongoDB 3.2的文档,发现了这么两句话 Support for Multiple Storage Engines MongoDB supports multiple storage ...

  7. 生成大小为100的数组,从1到100,随机插入,不连续,也不重复[C#]

    生成大小为100的数组,从1到100,随机插入,不连续,也不重复. 实现思路 生成一个100位的集合listA,放1到100 创建一个空的集合listB,用来存放结果 创建一个变量c,临时存储生成的数 ...

  8. 探索 OpenStack 之(9):深入块存储服务Cinder (功能篇)

    继研究了Neutron之后,继续Nova的外围研究之旅.本站是研究块存储服务Cinder. 0.验证环境 环境包括: 1.一个controller节点,运行nova-api, nova-schedul ...

  9. CUDA入门1

      1GPUs can handle thousands of concurrent threads. 2The pieces of code running on the gpu are calle ...

  10. uva 524 prime ring problem——yhx

      Prime Ring Problem  A ring is composed of n (even number) circles as shown in diagram. Put natural ...