[CareerCup] 7.6 The Line Passes the Most Number of Points 经过最多点的直线
7.6 Given a two-dimensional graph with points on it, find a line which passes the most number of points.
这道题给了我们许多点,让我们求经过最多点的一条直线。给之前那道7.5 A Line Cut Two Squares in Half 平均分割两个正方形的直线一样,都需要自己写出点类和直线类。在直线类中,我用我们用斜率和截距来表示直线,为了应对斜率不存在情况,我们还需用一个flag来标记是否为垂直的线。在直线类中,我们要有判断两条直线是否相等的函数。判断相等的方法和之前那道7.3 Line Intersection 直线相交相同,都需要使用epsilon,只要两个数的差值的绝对值小于epsilon,我们就认定是相等的。对于给定的所有点,每两个点能组成一条直线,我们的方法是遍历所有的直线,把所有相同的直线都存入哈希表中,key是直线的斜率,映射关系是斜率和直线集合的映射,那么我们只需找到包含直线最多的那个集合即可,参见代码如下:
class Point {
public:
double _x, _y;
Point(double x, double y): _x(x), _y(y) {};
};
class Line {
public:
static constexpr double _epsilon = 0.0001;
double _slope, _intercept;
bool _infi_slope = false;
Line(Point p, Point q) {
if (fabs(p._x - q._x) > _epsilon) {
_slope = (p._y - q._y) / (p._x - q._x);
_intercept = p._y - _slope * p._x;
} else {
_infi_slope = true;
_intercept = p._x;
}
}
static double floorToNearestEpsilon(double d) {
int r = (int)(d / _epsilon);
return ((double)r) * _epsilon;
}
bool isEquivalent(double a, double b) {
return (fabs(a - b) < _epsilon);
}
bool isEquivalent(Line other) {
if (isEquivalent(_slope, other._slope) && isEquivalent(_intercept, other._intercept) && (_infi_slope == other._infi_slope)) {
return true;
}
return false;
}
};
class Solution {
public:
Line findBestLine(vector<Point> &points) {
Line res(points[], points[]);
int bestCnt = ;
unordered_map<double, vector<Line> > m;
for (int i = ; i < (int)points.size(); ++i) {
for (int j = i + ; j < (int)points.size(); ++j) {
Line line(points[i], points[j]);
insertLine(m, line);
int cnt = countEquivalentLines(m, line);
if (cnt > bestCnt) {
res = line;
bestCnt = cnt;
}
}
}
return res;
}
void insertLine(unordered_map<double, vector<Line> > &m, Line &line) {
vector<Line> lines;
double key = Line::floorToNearestEpsilon(line._slope);
if (m.find(key) != m.end()) {
lines = m[key];
} else {
m[key] = lines;
}
lines.push_back(line);
}
int countEquivalentLines(unordered_map<double, vector<Line> > &m, Line &line) {
double key = Line::floorToNearestEpsilon(line._slope);
double eps = Line::_epsilon;
return countEquivalentLines(m[key], line) + countEquivalentLines(m[key - eps], line) + countEquivalentLines(m[key + eps], line);
}
int countEquivalentLines(vector<Line> &lines, Line &line) {
if (lines.empty()) return ;
int res = ;
for (auto &a : lines) {
if (a.isEquivalent(line)) ++res;
}
return res;
}
};
[CareerCup] 7.6 The Line Passes the Most Number of Points 经过最多点的直线的更多相关文章
- [CC150] Find a line passing the most number of points
Problem: Given a two-dimensional graph with points on it, find a line which passes the most number o ...
- [CareerCup] 7.5 A Line Cut Two Squares in Half 平均分割两个正方形的直线
7.5 Given two squares on a two-dimensional plane, find a line that would cut these two squares in ha ...
- [LeetCode OJ] Max Points on a Line—Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.
//定义二维平面上的点struct Point { int x; int y; Point(, ):x(a),y(b){} }; bool operator==(const Point& le ...
- leetcode ex3 找出穿过最多点的直线 Max Points on a Line
题目 https://oj.leetcode.com/problems/max-points-on-a-line/ 答案与分析 http://www.aiweibang.com/yuedu/18326 ...
- CareerCup All in One 题目汇总 (未完待续...)
Chapter 1. Arrays and Strings 1.1 Unique Characters of a String 1.2 Reverse String 1.3 Permutation S ...
- CareerCup All in One 题目汇总
Chapter 1. Arrays and Strings 1.1 Unique Characters of a String 1.2 Reverse String 1.3 Permutation S ...
- Careercup | Chapter 7
7.4 Write methods to implement the multiply, subtract, and divide operations for integers. Use only ...
- 2018浙江省赛(ACM) The 15th Zhejiang Provincial Collegiate Programming Contest Sponsored by TuSimple
我是铁牌选手 这次比赛非常得爆炸,可以说体验极差,是这辈子自己最脑残的事情之一. 天时,地利,人和一样没有,而且自己早早地就想好了甩锅的套路. 按理说不开K就不会这么惨了啊,而且自己也是毒,不知道段错 ...
- iOS: 如何正确的绘制1像素的线
iOS 绘制1像素的线 一.Point Vs Pixel iOS中当我们使用Quartz,UIKit,CoreAnimation等框架时,所有的坐标系统采用Point来衡量.系统在实际渲染到设置时会帮 ...
随机推荐
- 远程连接mysql容易遇到的2个问题
1."com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: Communications link failure The las ...
- WebService学习总结(二)——WebService相关概念介绍
一.WebService是什么? 1. 基于Web的服务:服务器端整出一些资源让客户端应用访问(获取数据) 2. 一个跨语言.跨平台的规范(抽象) 3. 多个跨平台.跨语言的应用间通信整合的方案(实际 ...
- linux把EDT时间修改为CST格式
初始时间:2012年 09月 14日 星期五 18:15:33 EDT [root@test ~]# mv /etc/localtime /etc/localtime.bak [root@test ~ ...
- apache 开启zgip 压缩模式
一.Apache开启gzip压缩模式在目录apache\conf\httpd.conf 配置 httpd.conf 文件: #去掉LoadModule deflate_module modules/m ...
- 读书笔记——Windows核心编程(8)Interlocked单向链式栈
SLists使用了无锁算法来保证原子同步,以提升系统性能,避免了诸如优先级挂和互锁的问题. 注意:所有的链表项必须对齐到MEMORY_ALLOCATION_ALIGNMENT.否则会出现奇葩的错误. ...
- MongoDB 存储引擎Wiredtiger原理剖析
今天开始看MongoDB 3.2的文档,发现了这么两句话 Support for Multiple Storage Engines MongoDB supports multiple storage ...
- 生成大小为100的数组,从1到100,随机插入,不连续,也不重复[C#]
生成大小为100的数组,从1到100,随机插入,不连续,也不重复. 实现思路 生成一个100位的集合listA,放1到100 创建一个空的集合listB,用来存放结果 创建一个变量c,临时存储生成的数 ...
- 探索 OpenStack 之(9):深入块存储服务Cinder (功能篇)
继研究了Neutron之后,继续Nova的外围研究之旅.本站是研究块存储服务Cinder. 0.验证环境 环境包括: 1.一个controller节点,运行nova-api, nova-schedul ...
- CUDA入门1
1GPUs can handle thousands of concurrent threads. 2The pieces of code running on the gpu are calle ...
- uva 524 prime ring problem——yhx
Prime Ring Problem A ring is composed of n (even number) circles as shown in diagram. Put natural ...