Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 13345    Accepted Submission(s): 4146

Problem Description
Give a number n, find the minimum x(x>0) that satisfies 2^x mod n = 1.
 
Input
One positive integer on each line, the value of n.
 
Output
If the minimum x exists, print a line with 2^x mod n = 1.

Print 2^? mod n = 1 otherwise.

You should replace x and n with specific numbers.

 
Sample Input
2
5
 
Sample Output
2^? mod 2 = 1
2^4 mod 5 = 1
 
Author
MA, Xiao
 
#include<cstdio>
#include<cmath>
int Powermod(int a,int b,int c)//快速幂
{
int ans=1;
if(a%c==0) return 0;
a=a%c;
while(b)
{
if(b&1)
ans=ans*a%c;
a=a*a%c;
b>>=1;
}
return ans; }
int main()
{
int i,n;
//奇数除了1一定有结果,偶数一定没结果
while(~scanf("%d",&n))
{
if(n%2==0||n==1)//2^x对偶数求余结果为偶数,不为1 1的时候结果也不存在
{printf("2^? mod %d = 1\n",n);continue;}
for(i=1;; i++)//对于2^x mod n,当1<=i<=n 就能得到所有求余结果
if(Powermod(2,i,n)==1)
{
printf("2^%d mod %d = 1\n",i,n);
break;
} }
}

  

2^x mod n = 1的更多相关文章

  1. 函数mod(a,m)

    Matlab中的函数mod(a,m)的作用: 取余数 例如: mod(25,5)=0; mod(25,10)=5; 仅此.

  2. ORACLE 数据库 MOD 函数用法

    1.求2和1的余数. Select mod(2,1) from dual: 2能被1整除所以余数为0. 2.MOD(x,y)返回X除以Y的余数.如果Y是0,则返回X的值. Select mod(2,0 ...

  3. 黑科技项目:英雄无敌III Mod <<Fallen Angel>>介绍

    英雄无敌三简介(Heroes of Might and Magic III) 英3是1999年由New World Computing在Windows平台上开发的回合制策略魔幻游戏,其出版商是3DO. ...

  4. [日常训练]mod

    Description 给定$p_1,p_2,-,p_n,b_1,b_2,...,b_m$, 求满足$x\;mod\;p_1\;\equiv\;a_1,x\;mod\;p_2\;\equiv\;a_2 ...

  5. Apache Mod/Filter Development

    catalog . 引言 . windows下开发apache模块 . mod进阶: 接收客户端数据的 echo 模块 . mod进阶: 可配置的 echo 模块 . mod进阶: 过滤器 0. 引言 ...

  6. FZU 1752 A^B mod C(快速加、快速幂)

    题目链接: 传送门 A^B mod C Time Limit: 1000MS     Memory Limit: 65536K 思路 快速加和快速幂同时运用,在快速加的时候由于取模耗费不少时间TLE了 ...

  7. HDOJ 4389 X mod f(x)

    数位DP........ X mod f(x) Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  8. hdu.1104.Remainder(mod && ‘%’ 的区别 && 数论(k*m))

    Remainder Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  9. 对于一个负数mod正数

    鸟神说.. a/b靠零取整 然后呢..a%b定义成a-(a/b)*b c语言就是这么算的... 那么python2.6是怎么算的呢 如果最后你取模想得到一个正数.. 那么在上述取模定义不变的情况下 p ...

  10. 51Nod 1046 A^B Mod C Label:快速幂

    给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...

随机推荐

  1. POJ 1442 Black Box

    第k大数维护,我推荐Treap..谁用谁知道....                                                           Black Box Time ...

  2. 第17章 使用iSCSI服务部署网络存储

    章节概述: 本章节将分析SCSI与iSCSI技术结构的不同,了解iSCSI技术的优势.SAN存储网络技术结构以及iSCSI HBA卡的作用. 完整演示部署iSCSI target服务程序的方法流程:创 ...

  3. Linux and the Unix Philosophy (Linux/Unix设计思想)

    http://www.iwangzheng.com/ 大约30年前,当美国人边开着大型轿车边享受着其他国家民众的羡慕目光时,大众汽车却在美国开展了一项主题为“小即是美”的广告营销活动.那时,美国人对大 ...

  4. Tomcat ClassLoader机制介绍

    本文旨在介绍JVM的类加载机制:同时分析Tomcat不能采用默认的加载机制的原因,并对其加载机制做了介绍. 1.JVM中的类加载机制 在Java2之后的版本中,类的加载采用的是一种称为双亲委派的代理模 ...

  5. Linux系统管理员面试50题

    命令nslookup是做什么的? Nslookup 是一个 监测网络中 DNS 服务器是否能正确实现域名解析的命令行工具. 你如何把CPU占用率最高的进程显示出来? top -c 按照cpu排序 如果 ...

  6. SphinxSE的安装

    SphinxSE 的使用 SphinxSE 的使用 :wiki SphinxSE是一个可以编译进MySQL 5.x版本的MySQL存储引擎,尽管被称作“存储引擎”,SphinxSE自身其实并不存储任何 ...

  7. QEMU 使用的镜像文件:qcow2 与 raw

    qcow2 的基本原理 qcow2 镜像格式是 QEMU 模拟器支持的一种磁盘镜像.它也是可以用一个文件的形式来表示一块固定大小的块设备磁盘.与普通的 raw 格式的镜像相比,有以下特性: 更小的空间 ...

  8. github student pack中的digital ocean可以使用银联卡支付

    申请了 github student pack却因为一直没有visita信用卡,而无法使用digital ocean的 $50,一直到今天,用中国银行借记卡成功支付. 方法是: (1)注册paypal ...

  9. tmux简单使用指南

    一, ubuntu安装tmux sudo apt-get install tmux 二, tmux使用 1)打开shell,输入命令tmux,,shell下边会出现绿色状态条 2)然后同时按下ctrl ...

  10. poj1185

    状态压缩dp #include <cstdio> #include <cstring> #include <cstdlib> #include <iostre ...