main.c

 #include <reg51.h>
#include <api.h> #define uchar unsigned char /***************************************************/
#define TX_ADR_WIDTH 5 // 5字节宽度的发送/接收地址
#define TX_PLOAD_WIDTH 4 // 数据通道有效数据宽度
#define LED P2 uchar code TX_ADDRESS[TX_ADR_WIDTH] = {0x34,0x43,0x10,0x10,0x01}; // 定义一个静态发送地址
uchar RX_BUF[TX_PLOAD_WIDTH];
uchar TX_BUF[TX_PLOAD_WIDTH];
uchar flag;
uchar DATA = 0x01;
uchar bdata sta;
sbit RX_DR = sta^;
sbit TX_DS = sta^;
sbit MAX_RT = sta^; /**************************************************
函数: init_io()
描述:
初始化IO
/**************************************************/
void init_io(void)
{
CE = ; // 待机
CSN = ; // SPI禁止
SCK = ; // SPI时钟置低
IRQ = ; // 中断复位
LED = 0xff; // 关闭指示灯
} /**************************************************
函数:delay_ms()
描述:
延迟x毫秒
/**************************************************/
void delay_ms(uchar x)
{
uchar i, j;
i = ;
for(i=; i<x; i++)
{
j = ;
while(--j);
j = ;
while(--j);
}
} /**************************************************
函数:SPI_RW()
描述:
根据SPI协议,写一字节数据到nRF24L01,同时从nRF24L01
读出一字节
/**************************************************/
uchar SPI_RW(uchar byte)
{
uchar i;
for(i=; i<; i++) // 循环8次
{
MOSI = (byte & 0x80); // byte最高位输出到MOSI
byte <<= ; // 低一位移位到最高位
SCK = ; // 拉高SCK,nRF24L01从MOSI读入1位数据,同时从MISO输出1位数据
byte |= MISO; // 读MISO到byte最低位
SCK = ; // SCK置低
}
return(byte); // 返回读出的一字节
} /**************************************************
函数:SPI_RW_Reg()
描述:
写数据value到reg寄存器
/**************************************************/
uchar SPI_RW_Reg(uchar reg, uchar value)
{
uchar status;
CSN = ; // CSN置低,开始传输数据
status = SPI_RW(reg); // 选择寄存器,同时返回状态字
SPI_RW(value); // 然后写数据到该寄存器
CSN = ; // CSN拉高,结束数据传输
return(status); // 返回状态寄存器
} /**************************************************
函数:SPI_Read()
描述:
从reg寄存器读一字节
/**************************************************/
uchar SPI_Read(uchar reg)
{
uchar reg_val;
CSN = ; // CSN置低,开始传输数据
SPI_RW(reg); // 选择寄存器
reg_val = SPI_RW(); // 然后从该寄存器读数据
CSN = ; // CSN拉高,结束数据传输
return(reg_val); // 返回寄存器数据
} /**************************************************
函数:SPI_Read_Buf()
描述:
从reg寄存器读出bytes个字节,通常用来读取接收通道
数据或接收/发送地址
/**************************************************/
uchar SPI_Read_Buf(uchar reg, uchar * pBuf, uchar bytes)
{
uchar status, i;
CSN = ; // CSN置低,开始传输数据
status = SPI_RW(reg); // 选择寄存器,同时返回状态字
for(i=; i<bytes; i++)
pBuf[i] = SPI_RW(); // 逐个字节从nRF24L01读出
CSN = ; // CSN拉高,结束数据传输
return(status); // 返回状态寄存器
}
/**************************************************/ /**************************************************
函数:SPI_Write_Buf() 描述:
把pBuf缓存中的数据写入到nRF24L01,通常用来写入发
射通道数据或接收/发送地址
/**************************************************/
uchar SPI_Write_Buf(uchar reg, uchar * pBuf, uchar bytes)
{
uchar status, i;
CSN = ; // CSN置低,开始传输数据
status = SPI_RW(reg); // 选择寄存器,同时返回状态字
for(i=; i<bytes; i++)
SPI_RW(pBuf[i]); // 逐个字节写入nRF24L01
CSN = ; // CSN拉高,结束数据传输
return(status); // 返回状态寄存器
}
/**************************************************/ /**************************************************
函数:RX_Mode()
描述:
这个函数设置nRF24L01为接收模式,等待接收发送设备的数据包
/**************************************************/
void RX_Mode(void)
{
CE = ;
SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH); // 接收设备接收通道0使用和发送设备相同的发送地址
SPI_RW_Reg(WRITE_REG + EN_AA, 0x01); // 使能接收通道0自动应答
SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01); // 使能接收通道0
SPI_RW_Reg(WRITE_REG + RF_CH, ); // 选择射频通道0x40
SPI_RW_Reg(WRITE_REG + RX_PW_P0, TX_PLOAD_WIDTH); // 接收通道0选择和发送通道相同有效数据宽度
SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x0f); // 数据传输率1Mbps,发射功率0dBm,低噪声放大器增益
SPI_RW_Reg(WRITE_REG + CONFIG, 0x0f); // CRC使能,16位CRC校验,上电,接收模式
CE = ; // 拉高CE启动接收设备
} /**************************************************
函数:TX_Mode()
描述:
这个函数设置nRF24L01为发送模式,(CE=1持续至少10us),
130us后启动发射,数据发送结束后,发送模块自动转入接收
模式等待应答信号。
/**************************************************/
void TX_Mode(uchar * BUF)
{
CE = ;
SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH); // 写入发送地址
SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH); // 为了应答接收设备,接收通道0地址和发送地址相同
SPI_Write_Buf(WR_TX_PLOAD, BUF, TX_PLOAD_WIDTH); // 写数据包到TX FIFO
SPI_RW_Reg(WRITE_REG + SETUP_RETR, 0x1a); // 自动重发延时等待250us+86us,自动重发10次
SPI_RW_Reg(WRITE_REG + RF_CH, ); // 选择射频通道0x40
SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x0f); // 数据传输率1Mbps,发射功率0dBm,低噪声放大器增益
SPI_RW_Reg(WRITE_REG + CONFIG, 0x0e); // CRC使能,16位CRC校验,上电
CE = ;
} /**************************************************
函数:Check_ACK()
描述:
检查接收设备有无接收到数据包,设定没有收到应答信
号是否重发
/**************************************************/
uchar Check_ACK(bit clear)
{
while(IRQ);
sta = SPI_RW(NOP); // 返回状态寄存器
if(MAX_RT)
if(clear) // 是否清除TX FIFO,没有清除在复位MAX_RT中断标志后重发
SPI_RW(FLUSH_TX);
SPI_RW_Reg(WRITE_REG + STATUS, sta); // 清除TX_DS或MAX_RT中断标志
IRQ = ;
if(TX_DS)
return(0x00);
else
return(0xff);
} /**************************************************
函数:CheckButtons()
描述:
检查按键是否按下,按下则发送一字节数据
/**************************************************/
void CheckButtons()
{
P3 |= 0x00;
if(!(P3 & 0x01)) // 读取P3^0状态
{
delay_ms();
if(!(P3 & 0x01)) // 读取P3^0状态
{
TX_BUF[] = ~DATA; // 数据送到缓存
TX_Mode(TX_BUF); // 把nRF24L01设置为发送模式并发送数据
LED = ~DATA; // 数据送到LED显示
Check_ACK(); // 等待发送完毕,清除TX FIFO
delay_ms();
delay_ms();
LED = 0xff; // 关闭LED
RX_Mode(); // 设置为接收模式
while(!(P3 & 0x01));
DATA <<= ;
if(!DATA)
DATA = 0x01;
}
}
} /**************************************************
函数:main() 描述:
主函数
/**************************************************/
void main(void)
{
init_io(); // 初始化IO
RX_Mode(); // 设置为接收模式
while()
{
CheckButtons(); // 按键扫描
sta = SPI_Read(STATUS); // 读状态寄存器
if(RX_DR) // 判断是否接受到数据
{
SPI_Read_Buf(RD_RX_PLOAD, RX_BUF, TX_PLOAD_WIDTH); // 从RX FIFO读出数据
flag = ;
}
SPI_RW_Reg(WRITE_REG + STATUS, sta); // 清除RX_DS中断标志
if(flag) // 接受完成
{
flag = ; // 清标志
LED = RX_BUF[]; // 数据送到LED显示
delay_ms();
delay_ms();
LED = 0xff; // 关闭LED
}
}
}
/**************************************************/
 // BYTE type definition
#ifndef _BYTE_DEF_
#define _BYTE_DEF_
typedef unsigned char BYTE;
#endif /* _BYTE_DEF_ */ // Define interface to nRF24L01
#ifndef _SPI_PIN_DEF_
#define _SPI_PIN_DEF_
sbit CE = P1^;
sbit CSN= P1^;
sbit SCK= P1^;
sbit MOSI= P1^;
sbit MISO= P1^;
sbit IRQ = P1^;
#endif // Macro to read SPI Interrupt flag
//#define WAIT_SPIF (!(SPI0CN & 0x80)) // SPI interrupt flag(礐 platform dependent) // Declare SW/HW SPI modes
//#define SW_MODE 0x00
//#define HW_MODE 0x01 // Define nRF24L01 interrupt flag's
//#define MAX_RT 0x10 // Max #of TX retrans interrupt
//#define TX_DS 0x20 // TX data sent interrupt
//#define RX_DR 0x40 // RX data received //#define SPI_CFG 0x40 // SPI Configuration register value
//#define SPI_CTR 0x01 // SPI Control register values
//#define SPI_CLK 0x00 // SYSCLK/2*(SPI_CLK+1) == > 12MHz / 2 = 6MHz
//#define SPI0E 0x02 // SPI Enable in XBR0 register //****************************************************************//
// SPI(nRF24L01) commands
#define READ_REG 0x00 // Define read command to register
#define WRITE_REG 0x20 // Define write command to register
#define RD_RX_PLOAD 0x61 // Define RX payload register address
#define WR_TX_PLOAD 0xA0 // Define TX payload register address
#define FLUSH_TX 0xE1 // Define flush TX register command
#define FLUSH_RX 0xE2 // Define flush RX register command
#define REUSE_TX_PL 0xE3 // Define reuse TX payload register command
#define NOP 0xFF // Define No Operation, might be used to read status register //***************************************************//
// SPI(nRF24L01) registers(addresses)
#define CONFIG 0x00 // 'Config' register address
#define EN_AA 0x01 // 'Enable Auto Acknowledgment' register address
#define EN_RXADDR 0x02 // 'Enabled RX addresses' register address
#define SETUP_AW 0x03 // 'Setup address width' register address
#define SETUP_RETR 0x04 // 'Setup Auto. Retrans' register address
#define RF_CH 0x05 // 'RF channel' register address
#define RF_SETUP 0x06 // 'RF setup' register address
#define STATUS 0x07 // 'Status' register address
#define OBSERVE_TX 0x08 // 'Observe TX' register address
#define CD 0x09 // 'Carrier Detect' register address
#define RX_ADDR_P0 0x0A // 'RX address pipe0' register address
#define RX_ADDR_P1 0x0B // 'RX address pipe1' register address
#define RX_ADDR_P2 0x0C // 'RX address pipe2' register address
#define RX_ADDR_P3 0x0D // 'RX address pipe3' register address
#define RX_ADDR_P4 0x0E // 'RX address pipe4' register address
#define RX_ADDR_P5 0x0F // 'RX address pipe5' register address
#define TX_ADDR 0x10 // 'TX address' register address
#define RX_PW_P0 0x11 // 'RX payload width, pipe0' register address
#define RX_PW_P1 0x12 // 'RX payload width, pipe1' register address
#define RX_PW_P2 0x13 // 'RX payload width, pipe2' register address
#define RX_PW_P3 0x14 // 'RX payload width, pipe3' register address
#define RX_PW_P4 0x15 // 'RX payload width, pipe4' register address
#define RX_PW_P5 0x16 // 'RX payload width, pipe5' register address
#define FIFO_STATUS 0x17 // 'FIFO Status Register' register address //***************************************************************//
// FUNCTION's PROTOTYPES //
/****************************************************************
void SPI_Init(BYTE Mode); // Init HW or SW SPI
BYTE SPI_RW(BYTE byte); // Single SPI read/write
BYTE SPI_Read(BYTE reg); // Read one byte from nRF24L01
BYTE SPI_RW_Reg(BYTE reg, BYTE byte); // Write one byte to register 'reg'
BYTE SPI_Write_Buf(BYTE reg, BYTE *pBuf, BYTE bytes); // Writes multiply bytes to one register
BYTE SPI_Read_Buf(BYTE reg, BYTE *pBuf, BYTE bytes); // Read multiply bytes from one register
//*****************************************************************/

api.h

[51单片机] SPI nRF24L01 无线简单程序 1的更多相关文章

  1. [51单片机] SPI nRF24L01无线 [可以放在2个单片机里实现通信]

    main.c #include<reg51.h> #include"2401.h" #define uint unsigned int #define uchar un ...

  2. 基于51单片机个LCD1602的万年历程序

    小白 第一次跟新博客 基于51单片机和LCD1602的万年历程序 可实现走时和调时功能 有简单的1602菜单制作 欢迎大家交流 LCD1602和51单片机的连接方法 RS = P3^5; //数据/命 ...

  3. 51单片机 | SPI协议与应用实例

    ———————————————————————————————————————————— SPI总线 - - - - - - - - - - - - - - - - - - - - - - - - - ...

  4. 如何编写51单片机超声波测距SR04_lcd1602显示程序

    超声波测距在我们日常生活中很常见,比如说车在倒退的时候,为了防止车撞到障碍物,会在车尾加上一个超声波测距模块.在智能车比赛中,也有超声波测距模块等等.可见超声波非常的重要,接下来,我们上代码研究一下如 ...

  5. 51单片机对无线模块nRF24L01简单的控制收发程序

    它的一些物理特性如工作频段.供电电压.数据传输速率就不详细介绍了,直接上代码. 1.首先是发送端: // Define SPI pins #include <reg51.h> #defin ...

  6. 51单片机 Keil C 延时程序的简单研究

    应用单片机的时候,经常会遇到需要短时间延时的情况.需要的延时时间很短,一般都是几十到几百微妙(us).有时候还需要很高的精度,比如用单片机驱动DS18B20的时候,误差容许的范围在十几us以内,不然很 ...

  7. 2-物联网开发标配方案(51单片机程序介绍+WIFI程序介绍)

    上一节  https://www.cnblogs.com/yangfengwu/p/9944438.html 购买云服务器安装MQTT就不用说了,以前写过文章介绍 https://www.cnblog ...

  8. c语言编写51单片机中断程序,执行过程是怎样的?

    Q:c语言编写51单片机中断程序,执行过程是怎样的? 例如程序:#include<reg52.h>  void main(void)  {   EA=1;      //开放总中断   E ...

  9. 基于51单片机的CAN通讯协议C语言程序

      //-----------------------函数声明,变量定义-------------------------------------------------------- #includ ...

随机推荐

  1. css3 3d效果及动画学习

    css参考手册: http://www.phpstudy.net/css3/ http://www.css88.com/book/css/ 呈现3d效果:-webkit-transform-style ...

  2. Autofac 的属性注入方式

    介绍 该篇文章通过一个简单的 ASP.NET MVC 项目进行介绍如何使用 autofac 及 autofac 的 MVC 模块进行依赖注入.注入方式通过构造函数.在编写 aufofac 的依赖注入代 ...

  3. WebClient异步下载文件

    namespace ConsoleAppSyncDownload{    class Program    { static void Main(string[] args)        {     ...

  4. ArrayEasyFinish

    (1)Plus One 解题思路:模拟现实中做加法的方式,在个位加一,并考虑进位的情况.代码如下: public class Solution { public int[] plusOne(int[] ...

  5. [python] import curses

    python 中,我们使用 curses.wrapper 来创建终端交互window.使用 stdscr 来代表 window 对象. 使用方法: from curses import wrapper ...

  6. temp--test audio micphone

    DWORD CALLBACK waveInProc(HWAVEIN hWaveIn, UINT uMsg, DWORD dwInstance, DWORD dwParam1, DWORD dwPara ...

  7. linux--分卷压缩解压缩

    1.先压缩目录为一个文件 root@ip# tar zcvf apk.tar apk/ 2.对文件进行切分,-d表示切分后的文件后缀已数字区分(如apk_2015.tar01,apk_2015.tar ...

  8. 单片机TM4C123学习(九):PWM

    1.头文件与变量定义 #include "tiva_pwm.h" // PWM 2.初始化 // PWM 初始化,频率为1000,占空比为0 M1PWM7_init(, ); // ...

  9. Windows 设置扩展投影鼠标移出方向

    1. 连接数据线,按下 “WINDOWS” + P 按钮,选择“扩展投影”: 2.更改鼠标移出屏幕的方向:桌面右键选择“屏幕分辨率” , 移动“更改显示器外观”中两个图的相对方向即可:

  10. Action类为何要继承ActionSupport

    Action类为何要继承ActionSupport   理论上Struts 2.0的Action无须实现任何接口或继承任何类型,但是,我们为了方便实现Action,大多数情况下都会继承com.open ...