http://scottsievert.github.io/blog/2015/01/31/the-mysterious-eigenvalue/

The Fibonacci problem is a well known mathematical problem that models population growth and was conceived in the 1200s. Leonardo
of Pisa
 aka Fibonacci decided to use a recursive equation: xn=xn−1+xn−2 with
the seed values x0=0 and x1=1.
Implementing this recursive function is straightforward:1

1
2
3
4
def fib(n):
if n==0: return 0
if n==1: return 1
else: return fib(n-1) + fib(n-2)

Since the Fibonacci sequence was conceived to model population growth, it would seem that there should be a simple equation that grows almost exponentially. Plus, this recursive calling is expensive both in time and memory.2.
The cost of this function doesn’t seem worthwhile. To see the surprising formula that we end up with, we need to define our Fibonacci problem in a matrix language.3

[xnxn−1]=xn=A⋅xn−1=[1110]⋅[xn−1xn−2]

Calling each of those matrices and vectors variables and recognizing the fact that xn−1 follows
the same formula as xn allows
us to write

xn=A⋅xn−1=A⋅A⋯A⋅x0=An⋅x0

where we have used An to
mean n matrix
multiplications
. The corresponding implementation looks something like this:

1
2
3
4
5
def fib(n):
A = np.asmatrix('1 1; 1 0')
x_0 = np.asmatrix('1; 0')
x_n = np.linalg.matrix_power(A, n).dot(x_0)
return x_n[1]

While this isn’t recursive, there’s still an n−1 unnecessary
matrix multiplications. These are expensive time-wise and it seems like there should be a simple formula involving n.
As populations grow exponentially, we would expect this formula to involve scalars raised to the nth
power. A simple equation like this could be implemented many times faster than the recursive implementation!

The trick to do this rests on the mysterious and intimidating eigenvalues and eigenvectors. These are just a nice way to view the same data but they have a lot
of mystery behind them. Most simply, for a matrix A they
obey the equation

A⋅x=λ⋅x

for different eigenvalues λ and
eigenvectors x.
Through the way matrix multiplication is defined, we can represent all of these cases. This rests on the fact that the left multiplied diagonal matrix Λjust
scales each xi by λi.
The column-wise definition of matrix multiplication makes it clear that this is represents every case where the equation above occurs.

A⋅[x1x2]=[x1x2]⋅[λ100λ2]

Or compacting the vectors xi into
a matrix called X and
the diagonal matrix of λi’s
into Λ,
we find that

A⋅X=X⋅Λ

Because the Fibonacci eigenvector matrix is invertible,4

A=X⋅Λ⋅X−1

And then because a matrix and it’s inverse cancel

An=X⋅Λ⋅X−1⋅…⋅X⋅Λ⋅X−1=X⋅Λn⋅X−1

Λn is
a simple computation because Λ is
a diagonal matrix: every element is just raised to the nth
power. That means the expensive matrix multiplication only happens twice now. This is a powerful speed boost and we can calculate the result by substituting for An

xn=X⋅Λn⋅X−1⋅x0

For this Fibonacci matrix, we find that Λ=diag(1+5√2,1−5√2)=diag(λ1,λ2).
We could define our Fibonacci function to carry out this matrix multiplication, but these matrices are simple: Λ is
diagonal and x0=[1;0].
So, carrying out this fairly simple computation gives

xn=15√(λn1−λn2)≈15√⋅1.618034n

We would not expect this equation to give an integer. It involves the power of two irrational numbers, a division by another irrational number and even the golden ratio phi ϕ≈1.618!
However, it gives exactly the Fibonacci numbers – you can check yourself!

This means we can define our function rather simply:

1
2
3
4
5
6
7
def fib(n):
lambda1 = (1 + sqrt(5))/2
lambda2 = (1 - sqrt(5))/2
return (lambda1**n - lambda2**n) / sqrt(5)
def fib_approx(n)
# for practical range, percent error < 10^-6
return 1.618034**n / sqrt(5)

As one would expect, this implementation is fast. We see speedups of roughly 1000 for n=25,
milliseconds vs microseconds. This is almost typical when mathematics are applied to a seemingly straightforward problem. There are often large benefits by making the implementation slightly more cryptic!

I’ve found that mathematics5 becomes
fascinating, especially in higher level college courses, and can often yield surprising results. I mean, look at this blog post. We went from a expensive recursive equation to a simple and fast equation that only involves scalars. This derivation is one I
enjoy and I especially enjoy the simplicity of the final result. This is part of the reason why I’m going to grad school for highly mathematical signal processing. Real world benefits + neat
theory = <3.

  1. The complete implementation can be found on Github.

  2. Yes, in some languages some compilers are smart enough to get rid of recursion for some functions.

  3. I’m assuming you have taken a course that deals with matrices.

  4. This happens when a matrix is diagonalizable.

  5. Not math. Courses beyond calculus deserve a different name.

Posted by Scott
Sievert Jan 31st, 2015  math

Applying Eigenvalues to the Fibonacci Problem的更多相关文章

  1. [Algorithm] Fibonacci problem by using Dynamic programming

    vThere are three ways to solve Fibonacci problem Recursion Memoize Bottom-up 'First Recursion approa ...

  2. Codeforces 1264F - Beautiful Fibonacci Problem(猜结论+找性质)

    Codeforces 题面传送门 & 洛谷题面传送门 一道名副其实(beautiful)的结论题. 首先看到这道设问方式我们可以很自然地想到套用斐波那契数列的恒等式,注意到这里涉及到 \(F_ ...

  3. hdu 1568 Fibonacci 数学公式

    Fibonacci Problem Description 2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到的Fibonacci数列(f[0]=0,f[1]=1;f[i] = ...

  4. HDU - 1588 Gauss Fibonacci (矩阵高速幂+二分求等比数列和)

    Description Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very cle ...

  5. HDU 1588 Gauss Fibonacci(矩阵快速幂)

    Gauss Fibonacci Time Limit: 3000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others) ...

  6. HDU:Gauss Fibonacci(矩阵快速幂+二分)

    http://acm.hdu.edu.cn/showproblem.php?pid=1588 Problem Description Without expecting, Angel replied ...

  7. HDU 4099 Revenge of Fibonacci Trie+高精度

    Revenge of Fibonacci Problem Description The well-known Fibonacci sequence is defined as following: ...

  8. 跨平台的CStdString类,实现了CString的接口

    在实际工作中,std的string功能相对于MFC的CString来说,实在是相形见绌. CStdString类实现了CString的功能,支持跨平台. // ==================== ...

  9. Minimum Depth of Binary Tree 解答

    Question Given a binary tree, find its minimum depth. The minimum depth is the number of nodes along ...

随机推荐

  1. 实战:ADFS3.0单点登录系列-总览

    本系列将以一个实际项目为背景,介绍如何使用ADFS3.0实现SSO.其中包括SharePoint,MVC,Exchange等应用程序的SSO集成. 整个系列将会由如下几个部分构成: 实战:ADFS3. ...

  2. heartbeat初探

    1,概念及原理 http://www.mingxiao.info/tag/heartbeat/

  3. 思科产品选型pdf

    以前做工程时候想起了设备选型时候用过的一份文档. 有个小伙伴今天问起思科设备选型,恰好google到了这份文档 https://www.cisco.com/web/CN/products/pdf/04 ...

  4. linux下c++开发环境安装(eclipse+cdt)

    方法一: 此外,众所周知,Eclipse是Java程序,因此很容易就实现了跨平台,也是众所周知,Java的大型程序非常吃内存,即使有512MB内存, 仍然感觉Eclipse的启动速度很慢.个人认为1G ...

  5. Objective-c归档的概念和用法

  6. [Android] 安卓模拟器临时文件相关问题

    今天生产环境有台机器的硬盘满了,排查发现我的模块在/tmp/android-username目录下留了一堆形如“emulator-1tpH5l”的文件,占用了很大的空间. 这个模块会反复启停好几个安卓 ...

  7. WiFi QC 自动测试:Qt控制无线路由器

    在测试wifi的时候,测试人员一般要使用很多不同型号的AP,并且需要不断地切换Chariot的配置. 这里的思路是致力于提供一个友好的GUI界面来自动控制AP,并且自动控制Chariot进行Throu ...

  8. [转]Extundelete--数据恢复软件

    前言 作为一名运维人员,保证数据的安全是根本职责,所以在维护系统的时候,要慎之又慎,但是有时难免会出现数据被误删除的情况,在这个时候该如何快速.有效地恢复数据显得至关重要,extundelete就是其 ...

  9. 云计算之路-阿里云上:2014年6月11日17点遇到的CPU 100%状况

    今天下午17:00-17:05之间,在请求量没有明显变化的情况下,SLB中的1台云服务器的CPU突然串到100%(当时SLB中一共有3台云服务器),见下图: 造成的直接后果是请求执行时间变得超长,最长 ...

  10. [Json.net]Linq to Json

    引言 上篇学习了json.net的基本知识,这篇学习linq to json. 上篇文章:[Json.net]快速入门 Linq to Json Linq to Json是用来快速操作json对象的, ...