http://scottsievert.github.io/blog/2015/01/31/the-mysterious-eigenvalue/

The Fibonacci problem is a well known mathematical problem that models population growth and was conceived in the 1200s. Leonardo
of Pisa
 aka Fibonacci decided to use a recursive equation: xn=xn−1+xn−2 with
the seed values x0=0 and x1=1.
Implementing this recursive function is straightforward:1

1
2
3
4
def fib(n):
if n==0: return 0
if n==1: return 1
else: return fib(n-1) + fib(n-2)

Since the Fibonacci sequence was conceived to model population growth, it would seem that there should be a simple equation that grows almost exponentially. Plus, this recursive calling is expensive both in time and memory.2.
The cost of this function doesn’t seem worthwhile. To see the surprising formula that we end up with, we need to define our Fibonacci problem in a matrix language.3

[xnxn−1]=xn=A⋅xn−1=[1110]⋅[xn−1xn−2]

Calling each of those matrices and vectors variables and recognizing the fact that xn−1 follows
the same formula as xn allows
us to write

xn=A⋅xn−1=A⋅A⋯A⋅x0=An⋅x0

where we have used An to
mean n matrix
multiplications
. The corresponding implementation looks something like this:

1
2
3
4
5
def fib(n):
A = np.asmatrix('1 1; 1 0')
x_0 = np.asmatrix('1; 0')
x_n = np.linalg.matrix_power(A, n).dot(x_0)
return x_n[1]

While this isn’t recursive, there’s still an n−1 unnecessary
matrix multiplications. These are expensive time-wise and it seems like there should be a simple formula involving n.
As populations grow exponentially, we would expect this formula to involve scalars raised to the nth
power. A simple equation like this could be implemented many times faster than the recursive implementation!

The trick to do this rests on the mysterious and intimidating eigenvalues and eigenvectors. These are just a nice way to view the same data but they have a lot
of mystery behind them. Most simply, for a matrix A they
obey the equation

A⋅x=λ⋅x

for different eigenvalues λ and
eigenvectors x.
Through the way matrix multiplication is defined, we can represent all of these cases. This rests on the fact that the left multiplied diagonal matrix Λjust
scales each xi by λi.
The column-wise definition of matrix multiplication makes it clear that this is represents every case where the equation above occurs.

A⋅[x1x2]=[x1x2]⋅[λ100λ2]

Or compacting the vectors xi into
a matrix called X and
the diagonal matrix of λi’s
into Λ,
we find that

A⋅X=X⋅Λ

Because the Fibonacci eigenvector matrix is invertible,4

A=X⋅Λ⋅X−1

And then because a matrix and it’s inverse cancel

An=X⋅Λ⋅X−1⋅…⋅X⋅Λ⋅X−1=X⋅Λn⋅X−1

Λn is
a simple computation because Λ is
a diagonal matrix: every element is just raised to the nth
power. That means the expensive matrix multiplication only happens twice now. This is a powerful speed boost and we can calculate the result by substituting for An

xn=X⋅Λn⋅X−1⋅x0

For this Fibonacci matrix, we find that Λ=diag(1+5√2,1−5√2)=diag(λ1,λ2).
We could define our Fibonacci function to carry out this matrix multiplication, but these matrices are simple: Λ is
diagonal and x0=[1;0].
So, carrying out this fairly simple computation gives

xn=15√(λn1−λn2)≈15√⋅1.618034n

We would not expect this equation to give an integer. It involves the power of two irrational numbers, a division by another irrational number and even the golden ratio phi ϕ≈1.618!
However, it gives exactly the Fibonacci numbers – you can check yourself!

This means we can define our function rather simply:

1
2
3
4
5
6
7
def fib(n):
lambda1 = (1 + sqrt(5))/2
lambda2 = (1 - sqrt(5))/2
return (lambda1**n - lambda2**n) / sqrt(5)
def fib_approx(n)
# for practical range, percent error < 10^-6
return 1.618034**n / sqrt(5)

As one would expect, this implementation is fast. We see speedups of roughly 1000 for n=25,
milliseconds vs microseconds. This is almost typical when mathematics are applied to a seemingly straightforward problem. There are often large benefits by making the implementation slightly more cryptic!

I’ve found that mathematics5 becomes
fascinating, especially in higher level college courses, and can often yield surprising results. I mean, look at this blog post. We went from a expensive recursive equation to a simple and fast equation that only involves scalars. This derivation is one I
enjoy and I especially enjoy the simplicity of the final result. This is part of the reason why I’m going to grad school for highly mathematical signal processing. Real world benefits + neat
theory = <3.

  1. The complete implementation can be found on Github.

  2. Yes, in some languages some compilers are smart enough to get rid of recursion for some functions.

  3. I’m assuming you have taken a course that deals with matrices.

  4. This happens when a matrix is diagonalizable.

  5. Not math. Courses beyond calculus deserve a different name.

Posted by Scott
Sievert Jan 31st, 2015  math

Applying Eigenvalues to the Fibonacci Problem的更多相关文章

  1. [Algorithm] Fibonacci problem by using Dynamic programming

    vThere are three ways to solve Fibonacci problem Recursion Memoize Bottom-up 'First Recursion approa ...

  2. Codeforces 1264F - Beautiful Fibonacci Problem(猜结论+找性质)

    Codeforces 题面传送门 & 洛谷题面传送门 一道名副其实(beautiful)的结论题. 首先看到这道设问方式我们可以很自然地想到套用斐波那契数列的恒等式,注意到这里涉及到 \(F_ ...

  3. hdu 1568 Fibonacci 数学公式

    Fibonacci Problem Description 2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到的Fibonacci数列(f[0]=0,f[1]=1;f[i] = ...

  4. HDU - 1588 Gauss Fibonacci (矩阵高速幂+二分求等比数列和)

    Description Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very cle ...

  5. HDU 1588 Gauss Fibonacci(矩阵快速幂)

    Gauss Fibonacci Time Limit: 3000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others) ...

  6. HDU:Gauss Fibonacci(矩阵快速幂+二分)

    http://acm.hdu.edu.cn/showproblem.php?pid=1588 Problem Description Without expecting, Angel replied ...

  7. HDU 4099 Revenge of Fibonacci Trie+高精度

    Revenge of Fibonacci Problem Description The well-known Fibonacci sequence is defined as following: ...

  8. 跨平台的CStdString类,实现了CString的接口

    在实际工作中,std的string功能相对于MFC的CString来说,实在是相形见绌. CStdString类实现了CString的功能,支持跨平台. // ==================== ...

  9. Minimum Depth of Binary Tree 解答

    Question Given a binary tree, find its minimum depth. The minimum depth is the number of nodes along ...

随机推荐

  1. [资料收集]MySQL在线DDL工具pt-online-schema-change

    MySQL在线DDL工具pt-online-schema-change pt-online-schema-change使用说明(未完待续) 官网

  2. shell案例

    调用同目录下的ip.txt内容: 路径 [root@lanny ~]# pwd /root txt文件 [root@lanny ~]# cat ip.txt 10.1.1.1 10.1.1.2 10. ...

  3. eclipse(adt-bundle)的Android SDK Manager下载不了谷歌的东西怎么办?

    那就是换镜像! 腾讯镜像:android-mirror.bugly.qq.com 端口:8080 腾讯镜像使用方法:http://android-mirror.bugly.qq.com:8080/in ...

  4. [CareerCup] 13.3 Virtual Functions 虚函数

    13.3 How do virtual functions work in C++? 这道题问我们虚函数在C++中的工作原理.虚函数的工作机制主要依赖于虚表格vtable,即Virtual Table ...

  5. iOS - 语音云通讯

    iOS SDK 2.0 语音及图片消息详解本文档将详细介绍融云的语音及图片消息接口功能及使用说明.阅读本文前,我们假设您已经阅读了融云 iOS 开发指南,并掌握融云 SDK 的基本用法. 语音消息用来 ...

  6. scrollview中套listView的问题,记录一下。

    开发一个订单详情界面,详情界面上面要显示收货地址.订单总金额等,中间部分要一个listView,下面还有一些东西 但是一个界面显示不全,肯定要scrollview,然后发现listView竟然只显示第 ...

  7. C#基础之内存分配

    1.创建一个对象 一个对象的创建过程主要分为内存分配和初始化两个环节.在.NET中CLR管理的内存区域主要有三部分:栈.GC堆.LOH堆,栈主要用来分配值类型数据.它的管理是有系统控制的,而不是像GC ...

  8. Django1.8教程——从零开始搭建一个完整django博客(二)

    在上一节中,我们已经创建了一个Django模型Post,并使Post模型与数据库同步.这一节中,我们将介绍Django管理站点,通过Django管理站点来管理我们创建的Post模型实例. 为你的模型创 ...

  9. JavaScript中的各种小坑汇总

    1.Number()将部分非数字类型转换为0 强制转换为数值类型函数: parseFloat.parseInt 优点:对非数值类型统一返回NaN 缺点:会将一部分符合数值类型的字符串也识别为数值 pa ...

  10. Object C学习笔记14-分类(category)

    在.NET中有一个非常带劲的特性,那就是扩展方法. 扩展方法使你能够向现有类型“添加”方法(包括你自定义的类型和对象噢),而无需创建新的派生类型.重新编译或以其他方式修改原始类型.扩展方法是一种特殊的 ...