Codeforces 548B Mike and Fun
2 seconds
256 megabytes
standard input
standard output
Mike and some bears are playing a game just for fun. Mike is the judge. All bears except Mike are standing in an n × m grid, there's exactly one bear in each cell. We denote the bear standing in column number j of row number i by (i, j). Mike's hands are on his ears (since he's the judge) and each bear standing in the grid has hands either on his mouth or his eyes.
They play for q rounds. In each round, Mike chooses a bear (i, j) and tells him to change his state i. e. if his hands are on his mouth, then he'll put his hands on his eyes or he'll put his hands on his mouth otherwise. After that, Mike wants to know the score of the bears.
Score of the bears is the maximum over all rows of number of consecutive bears with hands on their eyes in that row.
Since bears are lazy, Mike asked you for help. For each round, tell him the score of these bears after changing the state of a bear selected in that round.
The first line of input contains three integers n, m and q (1 ≤ n, m ≤ 500 and 1 ≤ q ≤ 5000).
The next n lines contain the grid description. There are m integers separated by spaces in each line. Each of these numbers is either 0 (for mouth) or 1 (for eyes).
The next q lines contain the information about the rounds. Each of them contains two integers i and j(1 ≤ i ≤ n and 1 ≤ j ≤ m), the row number and the column number of the bear changing his state.
After each round, print the current score of the bears.
5 4 5
0 1 1 0
1 0 0 1
0 1 1 0
1 0 0 1
0 0 0 0
1 1
1 4
1 1
4 2
4 3
3
4
3
3
4
——————————————————————————————————————————————————————————————
本来挺简单的一道题,我却写得很复杂。不善于分析复杂度是硬伤啊!
———————————————————————————————————————————————————————————————
1. 读入复杂度N×M,这说明若果算法在与N×M相当的复杂度内是可以AC的
2. 对于一个长为L的01序列,可在O(L)时间内得到连续1的最大数目 (the maximum number of consecutive "1" s in it)。
int a[MAX_N];
int ans=, cur=;
for(int i=; i<=n; i++){
if(a[i]==){
cur++;
ans=max(ans, cur);
}
else cur=;
}
这个基本方法我却没想到,把简单问题搞得过于复杂,没怎么仔细考虑就决定用线段树维护,而且这线段树写得还很“丑陋”。
#include<bits/stdc++.h>
using namespace std;
const int MAX_N=;
//SegT_1
struct node{
int lb, rb;
int ma;
}T[MAX_N][MAX_N<<];
void renew(int i, int id){
node &now=T[i][id];
if(now.ma){
now.lb=now.rb=now.ma=;
}
else{
now.ma=now.lb=now.rb=;
}
}
void _renew(int i, int id, int L, int R){
node &fa=T[i][id], &ls=T[i][id<<], &rs=T[i][id<<|];
fa.lb=ls.lb==(R-L+)>>?ls.lb+rs.lb:ls.lb;
fa.rb=rs.rb==(R-L+)>>?rs.rb+ls.rb:rs.rb;
fa.ma=max(max(ls.ma, rs.ma), ls.rb+rs.lb);
}
void insert(int i, int id, int L, int R, int pos){
if(L==R){renew(i, id);return;}
int mid=(L+R)>>;
if(pos<=mid) insert(i, id<<, L, mid, pos);
else insert(i, id<<|, mid+, R, pos);
_renew(i, id, L, R);
}
//SegT_2
int mx[MAX_N<<];
void _insert(int id, int L, int R, int pos, int val){
if(L==R){mx[id]=val; return;}
int mid=(L+R)>>;
if(pos<=mid) _insert(id<<, L, mid, pos, val);
else _insert(id<<|, mid+, R, pos, val);
mx[id]=max(mx[id<<], mx[id<<|]);
}
//
int main(){
freopen("in", "r", stdin);
int N, M, Q;
cin>>N>>M>>Q;
int a;
for(int i=; i<=N; i++){
for(int j=; j<=M; j++)
if(cin>>a, a) insert(i, , , M, j);
_insert(, , N, i, T[i][].ma);
}
int i, j;
while(Q--){
cin>>i>>j;
insert(i, , , M, j);
_insert(, , N, i, T[i][].ma);
cout<<mx[]<<endl;
}
return ;
}
甚至于我还在想能不能在不牺牲时间复杂度的情况下将树状数组改造成支持单点改的RMQ(不想写两个线段树~<^>~),但我真是SB了。这题暴力的复杂度O(q(n+m)) (读入复杂度O(nm)相比之下可忽略了), 1e6的量级,1s完全可过了(况且都说Codeforces的机器快~)。
-----------------------------------------------------------------------------------------------------------------------
写复杂的原因呢,就是我不熟悉求一个01串内最长连续“1”的长度朴素的解法应该怎么写(怎么可以连这都不知道呢~),最终踏上了线段树的歧途。
(×&^伤#¥%), 最要紧的还是要把一些基础姿势get到。
Codeforces 548B Mike and Fun的更多相关文章
- CodeForces 548B Mike and Fun (模拟)
题意:给定一个n*m的矩阵,都是01矩阵,然后每次一个询问,改变一个格的值,然后问你最大有数是多少. 析:就是按他说的模拟,要预处理,只要把每行的最大值记下来,当改变时,再更新这一行的最大值. 代码如 ...
- hdu4135-Co-prime & Codeforces 547C Mike and Foam (容斥原理)
hdu4135 求[L,R]范围内与N互质的数的个数. 分别求[1,L]和[1,R]和n互质的个数,求差. 利用容斥原理求解. 二进制枚举每一种质数的组合,奇加偶减. #include <bit ...
- codeforces 547E Mike and Friends
codeforces 547E Mike and Friends 题意 题解 代码 #include<bits/stdc++.h> using namespace std; #define ...
- codeforces 689 Mike and Shortcuts(最短路)
codeforces 689 Mike and Shortcuts(最短路) 原题 任意两点的距离是序号差,那么相邻点之间建边即可,同时加上题目提供的边 跑一遍dijkstra可得1点到每个点的最短路 ...
- (CodeForces 548B 暴力) Mike and Fun
http://codeforces.com/problemset/problem/548/B Mike and some bears are playing a game just for fun. ...
- Codeforces 798D Mike and distribution - 贪心
Mike has always been thinking about the harshness of social inequality. He's so obsessed with it tha ...
- Codeforces 798C. Mike and gcd problem 模拟构造 数组gcd大于1
C. Mike and gcd problem time limit per test: 2 seconds memory limit per test: 256 megabytes input: s ...
- Codeforces 798A - Mike and palindrome
A. Mike and palindrome time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- Codeforces 689C. Mike and Chocolate Thieves 二分
C. Mike and Chocolate Thieves time limit per test:2 seconds memory limit per test:256 megabytes inpu ...
随机推荐
- 运维工作中常用到的几个rsync同步命令
作为一个运维工程师,经常可能会面对几十台.几百台甚至上千台服务器,除了批量操作外,环境同步.数据同步也是必不可少的技能.说到“同步”,不得不提的利器就是rsync. 下面结合本人近几年运维工作中对这一 ...
- Power Builder的学习
新的任务可能要运用PowerBuilder了,对这个名词之前仅是有所耳闻,工作中倒是用过power designer这个优秀的建模工具,出自同一家公司的产品,应该拥有同样的基因,于是上网开始查阅相关资 ...
- 思科产品选型pdf
以前做工程时候想起了设备选型时候用过的一份文档. 有个小伙伴今天问起思科设备选型,恰好google到了这份文档 https://www.cisco.com/web/CN/products/pdf/04 ...
- eclipse系列: Cannot change version of project facet Dynamic web的解决方法
问题描述 用Eclipse创建Maven结构的web项目的时候选择了Artifact Id为maven-artchetype-webapp,由于这个catalog比较老,用的servl ...
- php模式设计之 工厂模式
承接上篇php模式设计之 单例模式,(虽然好像关系不大).今天讲述第二种基础的模式设计——工厂模式. 那么何为工厂模式? 从名字来看,似乎看不出什么端倪.工厂模式,和生产有关?还是和生产流程有关?难道 ...
- Android中图片大小和屏幕密度的关系讲解
Android手机适配是非常让人头疼的一件事,尤其是图片,android为了做到是适配提供了很多文件夹来存放不同大小的图片,比如:drawable-ldpi.drawable-mdpi.drawabl ...
- Jsp内置对象及EL表达式的使用
一.JSP的内置对象(9个JSP内置对象) JSP的内置对象引用名称 对应的类型 request HttpServletRequest response HttpServletResponse ses ...
- 使用TinkPHP实现品字形布局
一.后台管理模版 后台管理模版通常使用frameset/iframe来布局.例如: <!DOCTYPE html> <html> <head> <title& ...
- 'UserInfoBLL' node cannot be resolved for the specified context [MVC展示数据.Controllers.LoginController]问题解决
我们在配置Spring.Net时,往往会提示找不到,然而看了看都对着呢?那么问题出在了哪? 问题呈现: 进行如下修改,将名字随便取个,不为BLL方法名字即可,我这里添加了一个1,注意这里改了,控制器里 ...
- 阿里百川IIMSDK-- 加好友,获取好友
加好友, 其实就是跟发消息一样 获取好友列表 同步好友列表 SDK内部默认会在每次登陆成功后与服务端同步好友列表,开发者可以通过设置disableAutoRequestAllContacts来禁用这个 ...