模板,,,

#include<cstdio>
using namespace std;
void exgcd(long long a,long long b,long long &x,long long &y){
if (b==0) {x=1; y=0;}
else {exgcd(b,a%b,x,y); int t=y; y=x-a/b*y; x=t;}
}
int main(){
long long a,b,x,y;
scanf("%lld %lld\n",&a,&b);
exgcd(a,b,x,y);
printf("%lld\n",(x+b)%b);
return 0;
}

白书上的更简短的模板:

void gcd(LL a,LL b,LL &d,LL &x,LL &y){
if (!b){
d=a;
x=1;
y=0;
}else{
gcd(b,a%b,d,y,x);
y-=x*(a/b);
}
}

【codevs 1200】【NOIP 2012】同余方程 拓展欧几里德求乘法逆元模板题的更多相关文章

  1. 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)

    题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...

  2. $O(n+log(mod))$求乘法逆元的方法

    题目 LOJ #152. 乘法逆元 2 题解 一个奇技淫巧qwq.可以离线求乘法逆元,效率\(O(n+log(mod))\). 考虑处理出\(s_n\)表示\(\prod_{i=1}^na_i\).以 ...

  3. hdu1115 Lifting the Stone(几何,求多边形重心模板题)

    转载请注明出处:http://blog.csdn.net/u012860063 题目链接:pid=1115">http://acm.hdu.edu.cn/showproblem.php ...

  4. [NOIp 2012]同余方程

    Description 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. Input 输入只有一行,包含两个正整数 a, b,用一个空格隔开. Output 输出只有一行,包含一个 ...

  5. [Noip 2012]同余方程(线性同余方程)

    我们先放题面-- RT就是求一个线性同余方程ax≡1(mod b)的最小正整数解 我们可以将这个同于方程转换成这个方程比较好理解 ax=1+bn(n为整数 我们再进行一个移项变为ax-bn=1 我们设 ...

  6. 51Nod 1256 求乘法逆元--扩展欧几里德

    #include<stdio.h> int exgcd(int a,int b,int &x,int &y) { ) { x=; y=; return a; } int r ...

  7. HDU-5685 Problem A 求乘法逆元

    题目链接:https://cn.vjudge.net/problem/HDU-5685 题意 给一个字符串S和一个哈希算法 $ H(s)=\prod_{i=1}^{i\leq len(s)}(S_{i ...

  8. 【模拟7.25】回家(tarjan V-DCC点双连通分量的求法及缩点 求割点)模板题

    作为一道板子题放在第二题令人身心愉悦,不到一个小时码完连对拍都没打. 关于tarjan割点的注意事项: 1.在该板子中我们求的是V-DCC,而不是缩点,V-DCC最少有两个点组成,表示出掉一个块里的任 ...

  9. exgcd,求乘法逆元

    procedure exgcd(a,b:int64); var t:longint; begin then begin x:=;y:=; exit; end else exgcd(b,a mod b) ...

随机推荐

  1. java 方法参数-值调用,引用调用问题

    (博客内容来自于core java卷一) 1. xx调用:程序设计语言中方法参数的传递方式: 引用调用(call by reference):表示方法接收的是调用者提供的变量地址. 值调用(call ...

  2. 该怎样提高ZBrush的创作效率

     ZBrush是一款数字雕刻和绘画软件,以强大的功能和直观的工作流程改变了整个三维行业,相信使用ZBrush的人都希望加快雕刻速度提高ZBrush技能,很多雕刻专家也都试图证明加快雕刻速度是否真的能提 ...

  3. AC日记——斗地主(dfs)

    题目描述 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54张牌来进行的扑克牌游戏.在斗地主中,牌的大小关系根据牌的数码表示如下:3<4< ...

  4. gridpanel分组汇总

    [ExtJS5学习笔记]第三十节 sencha extjs 5表格gridpanel分组汇总 2015-05-31     86 本文地址:http://blog.csdn.net/sushengmi ...

  5. 010医疗项目-模块一:用户添加的实现(Dao,Service,Action,增加页面调试,提交页面调试)

    要实现的效果:

  6. 14Spring_AOP编程(AspectJ)_环绕通知

    在目标方法执行前后,进行代码增强 (阻止目标方法的执行 ) 环绕通知实现任何通知效果. 案例如下: 案例结构:

  7. .Net中的异步编程总结

    一直以来很想梳理下我在开发过程中使用异步编程的心得和体会,但是由于我是APM异步编程模式的死忠,当TAP模式和TPL模式出现的时候我并未真正的去接纳这两种模式,所以导致我一直没有花太多心思去整理这两部 ...

  8. JS案例之7——瀑布流布局(2)

    这个例子与上一篇类似,唯一的区别是排序的方式有差别.上一篇是在高度最小的列里插入内容,这个案例是按顺序放置内容. 两种方法各有优缺点.第一种需要在图片内容加载完成的情况下有效.这个例子不需要在wind ...

  9. 完美隐藏win7文件和文件夹

    有没有一种方法即使使用隐藏模式也不能查看, 没错可以用上帝模式....... 啥是Win7上帝模式?不知道的看看..... <<<<<<<<<&l ...

  10. Android nDrawer

    GitHub上一款流行的侧滑,附上自己as编译过的源码http://download.csdn.net/detail/lj419855402/8559039. 留个纪念,说不定以后用得到. 依赖一个l ...