【BZOJ】3196: Tyvj 1730 二逼平衡树(区间第k小+树套树)
http://www.lydsy.com/JudgeOnline/problem.php?id=3196
Treap+树状数组
1WA1A,好伤心,本来是可以直接1A的,这次开始我并没有看题解,就写出来了,但是没有处理多个节点相同的情况,添加了多值单节点后,我竟然过不了样例,一直在调bug,哪想到是我改的时候手一抖把update的更新写错了。T_T,美好的青春就这样浪费了。
题目比较水,和Dynamic Rankings差不多,多思考就能写出来了。
#include <cstdio>
#include <cstdlib>
using namespace std;
#define lowbit(x) (x&-x)
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int oo=~0u>>1, N=50005;
int a[N], cnt; struct node {
node* ch[2];
int key, size, wei, cnt;
node() { ch[0]=ch[1]=NULL; key=size=cnt=0; wei=rand(); }
void pushup() { size=ch[0]->size+ch[1]->size+cnt; }
}*null;
struct Treap {
node* root;
Treap() { root=null; }
void rot(node* &rt, bool d) {
node* c=rt->ch[!d]; rt->ch[!d]=c->ch[d]; c->ch[d]=rt;
rt->pushup(); c->pushup();
if(root==rt) root=c;
rt=c;
}
node* newnode(const int &key) {
node* ret=new node;
ret->key=key; ret->size=ret->cnt=1;
ret->ch[0]=ret->ch[1]=null;
return ret;
}
void insert(const int &key, node* &rt) {
if(rt==null) { rt=newnode(key); return; }
if(key==rt->key) { rt->cnt++; rt->size++; return; }
bool d=key>rt->key;
insert(key, rt->ch[d]);
if(rt->wei>rt->ch[d]->wei) rot(rt, !d);
rt->pushup();
}
void remove(const int &key, node* &rt) {
if(rt==null) return;
int d=key>rt->key;
if(key==rt->key) {
if(rt->cnt>1) { rt->cnt--; rt->size--; return; }
d=rt->ch[0]->wei>rt->ch[1]->wei;
if(rt->ch[d]==null) {
delete rt;
rt=null;
return;
}
rot(rt, !d);
remove(key, rt->ch[!d]);
}
else remove(key, rt->ch[d]);
rt->pushup();
}
int rank(const int &key) {
int ret=0, s;
for(node* t=root; t!=null;) {
s=t->ch[0]->size+t->cnt;
if(key>t->key) ret+=s, t=t->ch[1];
else t=t->ch[0];
}
return ret;
}
int suc(const int &key) {
int ret=oo+1;
for(node* t=root; t!=null;)
if(key>t->key) ret=t->key, t=t->ch[1];
else t=t->ch[0];
return ret;
}
int pre(const int &key) {
int ret=oo;
for(node* t=root; t!=null;)
if(key<t->key) ret=t->key, t=t->ch[0];
else t=t->ch[1];
return ret;
}
}*line[N], *nod[N], *q[N]; void getrange(int l, int r) {
cnt=0;
int r1=r;
while(l<=r1) {
if(r1-lowbit(r1)+1>=l) {
q[cnt++]=line[r1];
r1-=lowbit(r1);
}
else {
q[cnt++]=nod[r1];
r1--;
}
}
} int getrank(const int &key) {
int ret=0;
for(int i=0; i<cnt; ++i)
ret+=q[i]->rank(key);
return ret;
} int getans(int l, int r, int k) {
getrange(l, r);
int left=oo+1, right=oo, s;
for(int i=0; i<cnt; ++i) {
node* t=q[i]->root;
while(t!=null) {
if(t->key<left) {
t=t->ch[1];
continue;
}
if(t->key>right) {
t=t->ch[0];
continue;
}
s=getrank(t->key);
if(s==k-1) return t->key;
if(s<k-1) {
left=t->key;
t=t->ch[1];
}
else {
right=t->key;
t=t->ch[0];
}
}
}
return left;
} int getsuc(int l, int r, const int &key) {
getrange(l, r);
int ret=oo+1, t;
for(int i=0; i<cnt; ++i) {
t=q[i]->suc(key);
ret=max(ret, t);
}
return ret;
} int getpre(int l, int r, const int &key) {
getrange(l, r);
int ret=oo, t;
for(int i=0; i<cnt; ++i) {
t=q[i]->pre(key);
ret=min(ret, t);
}
return ret;
} int main() {
null=new node; null->wei=oo; null->ch[0]=null->ch[1]=null;
int n, m;
scanf("%d%d", &n, &m);
for(int i=1; i<=n; ++i) {
scanf("%d", &a[i]);
line[i]=new Treap;
nod[i]=new Treap;
for(int j=i-lowbit(i)+1; j<=i; ++j)
line[i]->insert(a[j], line[i]->root);
nod[i]->insert(a[i], nod[i]->root);
}
int c, l, r, k;
while(m--) {
scanf("%d", &c);
if(c==1) {
scanf("%d%d%d", &l, &r, &k);
getrange(l, r);
printf("%d\n", getrank(k)+1);
}
else if(c==2) {
scanf("%d%d%d", &l, &r, &k);
printf("%d\n", getans(l, r, k));
}
else if(c==3) {
scanf("%d%d", &l, &k);
for(int i=l; i<=n; i+=lowbit(i)) {
line[i]->remove(a[l], line[i]->root);
line[i]->insert(k, line[i]->root);
}
a[l]=k;
nod[l]->root->key=k;
}
else if(c==4) {
scanf("%d%d%d", &l, &r, &k);
printf("%d\n", getsuc(l, r, k));
}
else if(c==5) {
scanf("%d%d%d", &l, &r, &k);
printf("%d\n", getpre(l, r, k));
}
}
return 0;
}
Description
1.查询k在区间内的排名
2.查询区间内排名为k的值
3.修改某一位值上的数值
4.查询k在区间内的前驱(前驱定义为小于x,且最大的数)
5.查询k在区间内的后继(后继定义为大于x,且最小的数)
Input
第一行两个数 n,m 表示长度为n的有序序列和m个操作
第二行有n个数,表示有序序列
下面有m行,opt表示操作标号
若opt=1 则为操作1,之后有三个数l,r,k 表示查询k在区间[l,r]的排名
若opt=2 则为操作2,之后有三个数l,r,k 表示查询区间[l,r]内排名为k的数
若opt=3 则为操作3,之后有两个数pos,k 表示将pos位置的数修改为k
若opt=4 则为操作4,之后有三个数l,r,k 表示查询区间[l,r]内k的前驱
若opt=5 则为操作5,之后有三个数l,r,k 表示查询区间[l,r]内k的后继
Output
对于操作1,2,4,5各输出一行,表示查询结果
Sample Input
4 2 2 1 9 4 0 1 1
2 1 4 3
3 4 10
2 1 4 3
1 2 5 9
4 3 9 5
5 2 8 5
Sample Output
4
3
4
9
HINT
1.n和m的数据范围:n,m<=50000
2.序列中每个数的数据范围:[0,1e8]
Source
【BZOJ】3196: Tyvj 1730 二逼平衡树(区间第k小+树套树)的更多相关文章
- bzoj 3196 Tyvj 1730 二逼平衡树(线段树套名次树)
3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1807 Solved: 772[Submit][Stat ...
- BZOJ 3196: Tyvj 1730 二逼平衡树( 树套树 )
这道题做法应该很多吧.... 我用了线段树套treap.... -------------------------------------------------------------------- ...
- bzoj 3196/ Tyvj 1730 二逼平衡树 (线段树套平衡树)
3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description ...
- bzoj 3196: Tyvj 1730 二逼平衡树
#include<cstdio> #include<ctime> #include<cstdlib> #include<iostream> #defin ...
- BZOJ 3196 Tyvj 1730 二逼平衡树 树套树 线段树 treap
http://www.lydsy.com/JudgeOnline/problem.php?id=3196 http://hzwer.com/2734.html 线段树套treap,似乎splay也可以 ...
- BZOJ 3196 Tyvj 1730 二逼平衡树:线段树套splay
传送门 题意 给你一个长度为 $ n $ 有序数列 $ a $ ,进行 $ m $ 次操作,操作有如下几种: 查询 $ k $ 在区间 $ [l,r] $ 内的排名 查询区间 $ [l,r] $ 内排 ...
- BZOJ - 3196 Tyvj 1730 二逼平衡树 (线段树套treap)
题目链接 区间线段树套treap,空间复杂度$O(nlogn)$,时间复杂度除了查询区间k大是$O(log^3n)$以外都是$O(log^2n)$的. (据说线段树套线段树.树状数组套线段树也能过?) ...
- bzoj 3196 Tyvj 1730 二逼平衡树【线段树 套 splay】
四舍五入就是个暴力. 对于线段树的每个区间都开一棵按权值排序的splay 对于第二个操作,二分一下,每次查询mid的排名,复杂度 $ O(nlog(n)^{3}) $ 其余的操作都是$ O(nlog( ...
- BZOJ 3196 Tyvj 1730 二逼平衡树 ——树状数组套主席树
[题目分析] 听说是树套树.(雾) 怒写树状数组套主席树,然后就Rank1了.23333 单点修改,区间查询+k大数查询=树状数组套主席树. [代码] #include <cstdio> ...
- bzoj 3196/tyvj p1730 二逼平衡树
原题链接:http://www.tyvj.cn/p/1730 树套树... 如下: #include<cstdio> #include<cstdlib> #include< ...
随机推荐
- linux 搭建hexo博客
搭建环境: CentOS 6.5 1.安装git的编译包 yum -y install gcc zlib-devel openssl-devel perl cpio expat-devel gette ...
- 【OpenStack】OpenStack系列13之Nova源码解析与API扩展
学习思路 议程:代码结构-主干流程-分层架构-业务模型-数据库模型-消息模型 分布式架构:Api:横向扩展 rpc:纵向扩展 分层架构:Controller接口层.View/Manager逻辑层 ...
- 【Hibernate】Hibernate系列8之管理session
管理session 更简单的,注入对象:
- 【云计算】ubuntu下docker安装配置指南
Docker Engine安装配置 以下描述仅Docker在Ubuntu Precise 12.04 (LTS).Ubuntu Trusty 14.04 (LTS).Ubuntu Wily 15.10 ...
- Python之property装饰器
参考: http://www.cnblogs.com/lovemo1314/archive/2011/05/03/2035600.html http://joy2everyone.iteye.com/ ...
- 【转】Eclipse中查看jar包中的源码
(简单的方式:通过jd-gui来进行反编译,最简单!,参考我的另一篇博文, 地址:http://www.cnblogs.com/gmq-sh/p/4277991.html) Java Decompil ...
- 【linux】awk的使用
教程来自:http://www.runoob.com/linux/linux-comm-awk.html 教程中的例子很好,可以有助于快速上手awk.但是里面的细节介绍的并不清楚. 问题1:什么时候写 ...
- 【USACO】calfflac
关键:以回文中心位置为变量进行遍历 //必须把纯字母先提出来 否则肯能会出现错误 比如: lvlv= 在检查长度4时 lvlv认为不是回文 vlv=认为是回文 但实际上 lvl 出现的要更早一些 // ...
- ionic添加admob广告教程
1.在你的ionic项目中使用如下命令添加admob插件: cordova plugin add cordova-plugin-admobpro 2.添加完成后,在$ionicPlatform.rea ...
- java中String类型转换方法
integer to String : int i = 42;String str = Integer.toString(i);orString str = "" + i doub ...