[算法]Comparison of the different algorithms for Polygon Boolean operations
Comparison of the different algorithms for Polygon Boolean operations.
Michael Leonov 1998
http://www.angusj.com/delphi/clipper.php#screenshots
http://www.complex-a5.ru/polyboolean/comp.html
http://www.angusj.com/delphi/clipper.php#screenshots
Introduction
When writing my BS degree work I tested the following software libraries for speed and robustness of performing polygon Boolean operations:
Library name | Principal author | Language |
---|---|---|
Boolean (v.1.34) | Klaas Holwerda | C++ |
Boolean Operations On Polygons (v. 2.0) (BOPS) | Matej Gombosi | C++ |
CGAL (r. 1.1) | Joint project of 7 sites | C++ |
Clippoly (pl. 7) | Klamer Schutte | C++ |
Constructive Planar Geometry (CPG) | Dave Eberly | C++ |
GPC (v.2.22) | Alan Murta | C |
LEDA (v.R-3.6.1) | Max-Planck-Institut fuer Informatik | C++ |
PolyBoolean v0.0 | Michael Leonov, Alexey Nikitin | C++ |
Capabilities
Library | AND | SUB | OR | XOR | HOLES | KH I | SI | DV | KH O |
---|---|---|---|---|---|---|---|---|---|
Boolean | + | + | + | + | + | + | - | + | + |
BOPS | + | - | + | - | + | - | - | - | + |
CGAL | + | + | + | - | - | - | - | - | - |
Clippoly | + | + | - | - | - | - | - | - | - |
CPG | + | + | + | + | + | - | - | + | - |
GPC | + | + | + | + | + | + | + | + | - |
LEDA | + | + | + | + | + | - | - | + | - |
PolyBoolean | + | + | + | + | + | + | - | + | - |
First 4 columns denote supported Boolean operations. HOLES means that a library can handle polygons with holes. KH I means that a library can handle polygons with 'keyholed' edges, which are sometimes used to describe a polygon with holes by means of single contour. SI means that a library allows self-intersecting polygons at its input. DV means that a library supports polygons with vertices of high degree, i.e. self-touching polygons. KH O means that a library's output can contain keyholed edges (I think this is the library's disadvantage).
Speed
For testing I used PC with CPU Pentium II (233 MHz) and 96Mb RAM running Windows NT Workstation 4.0 SP4. All source code was compiled with Microsoft Visual C++ 6.0 using the same alignment (8 bytes) and optimization options. Sample polygons were extracted from True Type Font contours using different levels of Bezier curves polygonal approximation. The test program was executed 5 times for every Boolean operation. The results are summarized in the table below (N denotes the total number of vertices in input polygons, all timings are measured in seconds, best times for each N are bold):
Library | N=3885 | N=7076 | N=20190 | N=69839 | N=174239 |
---|---|---|---|---|---|
Boolean | 1.084 | 1.773 | 5.923 | 23.219 | 65.927 |
Clippoly | 15.482 | 51.965 | 487.942 | ... | ... |
GPC | 0.160 | 0.381 | 8.570 | 64.463 | 133.670 |
LEDA | 0.806 | 1.422 | 3.801 | 16.636 | ... |
PolyBoolean | 0.158 | 0.255 | 0.721 | 3.532 | 16.011 |
For N=69839, 174239 Clippoly caused stack overflow due to the O(N) recursion depth. For N=174239 LEDA caused memory overflow (despite the presence of the extra 100 Mb of virtual memory) due to the extensive use of the rational ariphmetic.
Like Clippoly, CGAL and CPG have quadratic running time. BOPS produced incorrect results on test polygons so I did not include its timings.
Numerical robustness
Most of the programs listed above are not strictly robust and use floating point arithmetic with some tolerance values. CGAL, CPG and LEDA use exact rational arithmetic to achieve robustness. In this case, required memory size grows exponentially with a number of cascaded operations, and this seems not to be satisfactory for practical applications. PolyBoolean uses John Hobby's rounding cell technique to avoid extraneous intersections and is therefore completely robust. Boolean also rounds the intersection points to the integer grid, then repeats until no new intersection points are found.
References
Algorithm used in Boolean is described in [Holwerda 98]. Some additional information can be found in [Preparata and Shamos 85] (a must-have Computational Geometry book).
Algorithm used in BOPS is described in [Zalik, Gombosi and Podgorelec 98].
Algorithm used in CGAL is not documented.
Algorithm used in Clippoly is described in [Schutte 94] and [Schutte 95].
Algorithm used in CPG is described in [Eberly 98].
GPC uses a modified version of [Vatti 92]. Implementation details are discussed in [Murta 98]. Alan Murta is currently working on a paper describing GPC.
Polygon Boolean algorithm used in LEDA is not documented by itself. The segment intersection part is described in [Mehlhorn and Naher 94].
Polygon Boolean algorithm used in PolyBoolean is described in [Leonov and Nikitin 97]. Additional algorithmic and implementation issues are discussed in [Leonov 98]. The segment intersection part is based on [Bentley and Ottmann 79] and [Hobby 99].
- Bentley and Ottmann 1979
- J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput., C-28:643-647, 1979.
- Eberly 1998
- D. Eberly. Polysolids and Boolean Operations.
- Hobby 1999
- J. Hobby. Practical segment intersection with finite precision output. Computation Geometry Theory and Applications, 13(4), 1999.
- Holwerda 1998
- K. Holwerda et al. Complete Boolean Description.
- Leonov and Nikitin 1997
- M. V. Leonov and A. G. Nikitin. An Efficient Algorithm for a Closed Set of Boolean Operations on Polygonal Regions in the Plane(draft English translation). A. P. Ershov Institute of Informatics Systems, Preprint 46, 1997.
- Leonov 1998
- M. V. Leonov. Implementation of Boolean operations on sets of polygons in the plane(in Russian). BS Thesis, Novosibirsk State University, 1998.
- Mehlhorn and Naher 1994
- K. Mehlhorn and S. Naher. Implementation of a Sweep Line Algorithm for the Straight Line Segment Intersection Problem. Max-Planck-Institut fur Informatik, MPI-I-94-160, 1994.
- Murta 1998
- A. Murta. A Generic Polygon Clipping Library.
- Preparata and Shamos 1985
- F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, NY, 1985
- Schutte 1994
- K. Schutte. Knowledge Based Recognition of Man-Made Objects. PhD Thesis, University of Twente, 1994. ISBN90-9006902-X.
- Schutte 1995
- K. Schutte. An edge labeling approach to concave polygon clipping. Manuscript, 1995.
- Vatti 1992
- B. R. Vatti. A generic solution to polygon clipping. Commun. ACM, 35(7):56-63, 1992.
- Zalik, Gombosi and Podgorelec 1998
- B. Zalik, M. Gombosi and D. Podgorelec. A Quick Intersection Algorithm for Arbitrary Polygons. In L. Szirmay-Kalos (Ed.), SCCG98 Conf. on Comput. Graphics and it's Applicat., 195-204, 1998. ISBN 80-223-0837-4.
Conclusions
All tested libraries are very good for educational purposes and for studying different approaches to the polygon Boolean operations. PolyBoolean, Boolean and GPC are probably the fastest publicly available libraries. The correct rounding of intersection points is performed only in PolyBoolean and Boolean. Of course, all these opinions are only mine, and I don't attempt to make strong assertions about usefulness of these programs. Click here to get the polygons I used for testing. Soon I will make the source code of the test program (with all necessary modifications of the tested libraries) publicly available.
[算法]Comparison of the different algorithms for Polygon Boolean operations的更多相关文章
- OpenCascade Modeling Algorithms Boolean Operations
Modeling Algorithms Boolean Operations of Opencascade eryar@163.com 布尔操作(Boolean Operations)是通过两个形状( ...
- Python - 数据结构与算法(Data Structure and Algorithms)
入门 The Algorithms Python https://github.com/TheAlgorithms/Python 从基本原理到代码实现的Python算法入门,简洁地展示问题怎样解决,因 ...
- 游戏编程算法与技巧 Game Programming Algorithms and Techniques (Sanjay Madhav 著)
http://gamealgorithms.net 第1章 游戏编程概述 (已看) 第2章 2D图形 (已看) 第3章 游戏中的线性代数 (已看) 第4章 3D图形 (已看) 第5章 游戏输入 (已看 ...
- 图及其衍生算法(Graphs and graph algorithms)
1. 图的相关概念 树是一种特殊的图,相比树,图更能用来表示现实世界中的的实体,如路线图,网络节点图,课程体系图等,一旦能用图来描述实体,能模拟和解决一些非常复杂的任务.图的相关概念和词汇如下: 顶点 ...
- 树及其衍生算法(Trees and tree algorithms)
1,二叉树(Binary tree) 二叉树:每一个节点最多两个子节点,如下图所示: 相关概念:节点Node,路径path,根节点root,边edge,子节点 children,父节点parent,兄 ...
- 算法导论(Introduction to Algorithms )— 第十二章 二叉搜索树— 12.1 什么是二叉搜索树
搜索树数据结构支持很多动态集合操作,如search(查找).minmum(最小元素).maxmum(最大元素).predecessor(前驱).successor(后继).insert(插入).del ...
- Technical notes fornight
1.8.2016 Royal trumpeters heralded the beginning of the annual ceremony, as Norway's royal family an ...
- Python基础杂点
Black Hat Python Python Programming for Hackers and Pentesters by Justin Seitz December 2014, 192 p ...
- R语言︱决策树族——随机森林算法
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习 ...
随机推荐
- Acronis True Image Home 2011 PXE服务器配置_qxxz_新浪博客
想实现网络启动,并且Acronis启动菜单中带有Acronis True Image Home,需要安装以下软件: 1.安装Acronis True Image Home 2011及plush pac ...
- artDialog ( v 6.0.2 ) content 参数引入页面 html 内容
/*! artDialog v6.0.2 | https://github.com/aui/artDialog */ 将页面某一隐藏的 div 的 html 内容传到 artdialog 的弹窗中,并 ...
- 【Xamarin Doc】 Introduction to Storyboards 笔记
http://developer.xamarin.com/guides/ios/user_interface/introduction_to_storyboards/ Segues There are ...
- p::first-line { text-transform: uppercase }
https://www.w3.org/TR/css3-selectors/ Note that the length of the first line depends on a number of ...
- Windows Registry
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724871(v=vs.85).aspx https://msdn.microso ...
- Java中方法的覆写
所谓方法的覆写override就是子类定义了与父类中同名的方法,但是在方法覆写时必须考虑权限,即被子类覆写的方法不能拥有比父类方法更加严格的访问权限. 修饰符分别为public.protected.d ...
- HybridTime - Accessible Global Consistency with High Clock Uncertainty
Amazon's Dynamo [9] and Facebook's Cassandra [13], relax the consistency model,and offer only eventu ...
- netbeans环境搭建
1.下载文件http://pan.baidu.com/s/1kUu52mV 2.安装. 3.设置字体颜色,原先的太亮,我设置了保护色,参照sublime 我设置的字体高亮效果http://pan.ba ...
- php--tp3.2引入sphinx搜索
1.首先我们把coreseek下载好,命名为coreseek,我们找到coreseek/etc中的csft_mysql.conf修改这个配置文件 #源定义 source lemai { type ...
- ubuntu下的jdk安装
软件环境: 虚拟机:VMware Workstation 10 操作系统:ubuntu-12.04-desktop-amd64 JAVA版本:jdk-7u55-linux-x64 软件下载地址: JD ...