题目链接:【被和谐】

题目大意:对于一棵树$(V,E)$,对于$S\subset V$,$f(S)$为点集$S$的导出子图的边数。求$\sum_{S\subset V}f(S)^k$

这里的导出子图说的是,点集为S,边集为$\{(u,v)\in E|u,v\in S\}$的一个子图。


看到这个$k$次方,马上用斯特林数。

$$ans=\sum_{S\subset V}f(S)^k=\sum_{i=0}^ki!S(k,i)\sum_{S\subset V}{f(S)\choose i}$$

然后考虑怎么求后面那个式子。

这个式子表示在$S$的导出子图里面选$i$条边的方案数,然后就可以树形dp了

设$dp_{x,s,0/1}$表示在以$x$为根的子树内部,选择$s$条边,$x$是否$\in S$的答案。

在新加上一个$x$的子树$v$的时候,$S$只有原来只有新的子树的情况直接加上就行。

还有合在一起的情况,设原来的子树有$j$条边,$v$里面有$k$条边。

则$$dp[x][j+k][0]+=(dp[v][k][0]+dp[v][k][1])*dp[x][j][0]$$$$dp[x][j+k][1]+=(dp[v][k][0]+dp[v][k][1]+[k\not= 0]dp[v][k-1][1])*dp[x][j][1]$$

上面那里为什么要加$dp[v][k-1][1]$呢?因为这时$x$和$v$都在点集里,可以选择$(x,v)$这条边。

注意合在一起的情况还要统计进答案里。

而且由于会出现贡献到自己的情况,所以要用一个辅助数组来存储。

 #include<cstdio>
#include<cstring>
#define Rint register int
using namespace std;
typedef long long LL;
const int N = , mod = ;
int n, m, K, head[N], to[N << ], nxt[N << ], size[N];
inline void add(int a, int b){
static int cnt = ;
to[++ cnt] = b; nxt[cnt] = head[a]; head[a] = cnt;
}
LL dp[N][][], f[][], ans[], S[][];
inline void dfs(int x, int fa){
size[x] = ;
dp[x][][] = ; dp[x][][] = ; ++ ans[];
for(Rint i = head[x];i;i = nxt[i])
if(to[i] != fa){
dfs(to[i], x);
memcpy(f, dp[x], sizeof f);
for(Rint j = ;j <= K && j <= size[to[i]];j ++)
f[j][] = (f[j][] + dp[to[i]][j][] + dp[to[i]][j][]) % mod;
for(Rint j = ;j <= K && j <= size[x];j ++)
for(Rint k = ;k <= K - j && k <= size[to[i]];k ++){
LL S = (dp[to[i]][k][] + dp[to[i]][k][]) % mod;
LL s1 = dp[x][j][] * S % mod, s2 = dp[x][j][] * (S + (k ? dp[to[i]][k - ][] : )) % mod;
f[j + k][] = (f[j + k][] + s1) % mod;
f[j + k][] = (f[j + k][] + s2) % mod;
ans[j + k] = (ans[j + k] + s1 + s2) % mod;
}
memcpy(dp[x], f, sizeof f);
size[x] += size[to[i]];
}
}
int main(){
scanf("%d%d%d", &n, &m, &K);
for(Rint i = ;i < n;i ++){
int a, b;
scanf("%d%d", &a, &b);
add(a, b); add(b, a);
}
dfs(, );
S[][] = ;
for(Rint i = ;i <= K;i ++)
for(Rint j = ;j <= i;j ++)
S[i][j] = (S[i - ][j - ] + S[i - ][j] * j) % mod;
LL fac = , res = ;
for(Rint i = ;i <= K;i ++){
fac = fac * i % mod;
res = (res + fac * S[K][i] % mod * ans[i] % mod) % mod;
}
printf("%lld", res);
}

[GDOI2018]滑稽子图的更多相关文章

  1. GDOI2018 滑稽子图 [斯特林数,树形DP]

    传送门并没有 思路 见到那么小的\(k\)次方,又一次想到斯特林数. \[ ans=\sum_{T} f(T)^k = \sum_{i=0}^k i!S(k,i)\sum_{T} {f(T)\choo ...

  2. 【gdoi2018 day2】第二题 滑稽子图(subgraph)(性质DP+多项式)

    题目大意 [gdoi2018 day2]第二题 滑稽子图(subgraph) 给你一颗树\(T\),以及一个常数\(K\),对于\(T\)的点集\(V\)的子集\(S\). 定义\(f(S)\)为点集 ...

  3. 【gdoi2018 day2】第二题 滑稽子图

    题意: 给出一棵树.设\(E\)表示边集,\(V\)表示点集,\(S\)为\(V\)的一个子集. \(f(S)=|(u,v)|(u,v)\in E \ \&\&\ u\in V\ \& ...

  4. 【GDOI】2018题目及题解(未写完)

    我的游记:https://www.cnblogs.com/huangzihaoal/p/11154228.html DAY1 题目 T1 农场 [题目描述] [输入] 第一行,一个整数n. 第二行,n ...

  5. scrapy 也能爬取妹子图?

    目录 前言 Media Pipeline 启用Media Pipeline 使用 ImgPipeline 抓取妹子图 瞎比比前言 我们在抓取数据的过程中,除了要抓取文本数据之外,当然也会有抓取图片的需 ...

  6. GDOI2018游记

    前言 不知怎的,本蒟蒻居然拿到了GDOI参赛名额 于是乎,我稀里糊涂地跟着诸位大佬屁颠屁颠地来到了阔别已久的中山一中 腐败difficult and interesting的GDOI比赛就这样开始了. ...

  7. 最大半连通子图 bzoj 1093

    最大半连通子图 (1.5s 128MB) semi [问题描述] 一个有向图G = (V,E)称为半连通的(Semi-Connected),如果满足:∀ u, v ∈V,满足u->v 或 v - ...

  8. [Java]使用HttpClient实现一个简单爬虫,抓取煎蛋妹子图

    第一篇文章,就从一个简单爬虫开始吧. 这只虫子的功能很简单,抓取到”煎蛋网xxoo”网页(http://jandan.net/ooxx/page-1537),解析出其中的妹子图,保存至本地. 先放结果 ...

  9. BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...

随机推荐

  1. CLOS网络架构与FATTREE胖树拓扑

    FatTree拓扑结构是由MIT的Fares等人在改进传统树形结构性能的基础上提出的,属于switch-only型拓扑. 整个拓扑网络分为三个层次:自上而下分别为边缘层(edge).汇聚层(aggre ...

  2. 【转】WPF自定义控件与样式(5)-Calendar/DatePicker日期控件自定义样式及扩展

    一.前言 申明:WPF自定义控件与样式是一个系列文章,前后是有些关联的,但大多是按照由简到繁的顺序逐步发布的等. 本文主要内容: 日历控件Calendar自定义样式: 日期控件DatePicker自定 ...

  3. swoole webSocket服务

    socket.php <?php //创建websocket服务器对象,监听0.0.0.0:9502端口 $ws = ); //监听WebSocket连接打开事件 (刚打开的时候会给客户端发送 ...

  4. 完全卸载MySQL

    1.先停止mysql服务,cmd模式下输入net stop mysql; 或者在图形服务面板停止mysql服务 2.进入控制面板卸载mysql; 3.windows+R运行“regedit”文件,打开 ...

  5. iOS shell脚本打包

    原文链接:http://www.jianshu.com/p/5abbe0d61cef 参考链接:http://blog.csdn.net/potato512/article/details/52176 ...

  6. Kafka ACL使用实战

    自0.9.0.0.版本引入Security之后,Kafka一直在完善security的功能.当前Kafka security主要包含3大功能:认证(authentication).信道加密(encry ...

  7. 通过JVM 参数 实现spring 应用的二进制代码与配置分离。

    原创文章,转载请注明出处 分离的好处就不说了.说下分离的思路.通过JVM 参数-D 添加 config.path 的property 到系统中.系统通过System.getProperty(confi ...

  8. 使用mui.js实现下拉刷新

    闲聊: 最近因公司项目需求,小颖需要写一些html5页面,方便公司IOS和Android给APP中嵌套使用,其中需要实现拉下刷新功能,其实就是调用了一下mui.js就可以啦嘻嘻,下面跟着小颖一起来看看 ...

  9. java转换图片压缩生成webp格式

    http://blog.csdn.net/xu_san_duo/article/details/79085718

  10. 使用sts(SpringToolSuite4)无法将项目部署到tomcat容器

    一般情况下maven项目不能添加到tomcat容器中 ,需要在项目上进行设置 但是sts没有安装此插件,可以改用eclipse进行开发.