用uart实现printf函数
硬件:JZ2440
实现功能:用putchr()函数实现printf()
start.s
nand.c
uart.c
uart.h
my_stdio.c
my_stdio.h
main.c
start.s源码:
.extern main
.text
.global _start
_start:
ldr sp,=
bl watchdog_init
bl clock_init
bl nand_init
bl sdram_init ldr r0,=0x30000000
mov r1,#
mov r2,#(*)
bl nand_read ldr sp,=0x34000000
ldr lr,=main_return
ldr pc,=main
main_return:
b main_return
init.c
//watchdog
#define WTCON (*(volatile unsigned long *)0x53000000) //clock
#define LOCKTIME (*(volatile unsigned long *)0x4c000000)
#define MPLLCON (*(volatile unsigned long *)0x4c000004)
#define CLKDIVN (*(volatile unsigned long *)0x4c000014) //sdram
#define BWSCON (*(volatile unsigned long *)0x48000000)
#define BANKCON0 (*(volatile unsigned long *)0x48000004)
#define BANKCON1 (*(volatile unsigned long *)0x48000008)
#define BANKCON2 (*(volatile unsigned long *)0x4800000c)
#define BANKCON3 (*(volatile unsigned long *)0x48000010)
#define BANKCON4 (*(volatile unsigned long *)0x48000014)
#define BANKCON5 (*(volatile unsigned long *)0x48000018)
#define BANKCON6 (*(volatile unsigned long *)0x4800001c)
#define BANKCON7 (*(volatile unsigned long *)0x48000020)
#define REFRESH (*(volatile unsigned long *)0x48000024)
#define BANKSIZE (*(volatile unsigned long *)0x48000028)
#define MRSRB6 (*(volatile unsigned long *)0x4800002c)
#define MRSRB7 (*(volatile unsigned long *)0x48000030) void watchdog_init(void)
{
WTCON=;
} void clock_init(void)
{
CLKDIVN=0x03;
__asm__
(
"mrc p15,0,r1,c1,c0,0\n"
"orr r1,r1,#0xc0000000\n"
"mcr p15,0,r1,c1,c0,0\n"
);
MPLLCON=((0x5c<<)|(0x01<<)|(0x02));
} void sdram_init(void)
{
volatile unsigned long *sdram_base=(volatile unsigned long *)0x48000000;
sdram_base[] = 0x22011110;
sdram_base[] = 0x00000700;
sdram_base[] = 0x00000700;
sdram_base[] = 0x00000700;
sdram_base[] = 0x00000700;
sdram_base[] = 0x00000700;
sdram_base[] = 0x00000700;
sdram_base[] = 0x00018005;
sdram_base[] = 0x00018005;
sdram_base[] = 0x008C04F4;
sdram_base[] = 0x000000B1;
sdram_base[] = 0x00000030;
sdram_base[] = 0x00000030; }
nand.c
#define LARGER_NAND_PAGE #define GSTATUS1 (*(volatile unsigned int *)0x560000B0)
#define BUSY 1 #define NAND_SECTOR_SIZE 512
#define NAND_BLOCK_MASK (NAND_SECTOR_SIZE - 1) #define NAND_SECTOR_SIZE_LP 2048
#define NAND_BLOCK_MASK_LP (NAND_SECTOR_SIZE_LP - 1) typedef unsigned int S3C24X0_REG32; /* NAND FLASH (see S3C2410 manual chapter 6) */
typedef struct {
S3C24X0_REG32 NFCONF;
S3C24X0_REG32 NFCMD;
S3C24X0_REG32 NFADDR;
S3C24X0_REG32 NFDATA;
S3C24X0_REG32 NFSTAT;
S3C24X0_REG32 NFECC;
} S3C2410_NAND; /* NAND FLASH (see S3C2440 manual chapter 6, www.100ask.net) */
typedef struct {
S3C24X0_REG32 NFCONF;
S3C24X0_REG32 NFCONT;
S3C24X0_REG32 NFCMD;
S3C24X0_REG32 NFADDR;
S3C24X0_REG32 NFDATA;
S3C24X0_REG32 NFMECCD0;
S3C24X0_REG32 NFMECCD1;
S3C24X0_REG32 NFSECCD;
S3C24X0_REG32 NFSTAT;
S3C24X0_REG32 NFESTAT0;
S3C24X0_REG32 NFESTAT1;
S3C24X0_REG32 NFMECC0;
S3C24X0_REG32 NFMECC1;
S3C24X0_REG32 NFSECC;
S3C24X0_REG32 NFSBLK;
S3C24X0_REG32 NFEBLK;
} S3C2440_NAND; typedef struct {
void (*nand_reset)(void);
void (*wait_idle)(void);
void (*nand_select_chip)(void);
void (*nand_deselect_chip)(void);
void (*write_cmd)(int cmd);
void (*write_addr)(unsigned int addr);
unsigned char (*read_data)(void);
}t_nand_chip; static S3C2410_NAND * s3c2410nand = (S3C2410_NAND *)0x4e000000;
static S3C2440_NAND * s3c2440nand = (S3C2440_NAND *)0x4e000000; static t_nand_chip nand_chip; /* 供外部调用的函数 */
void nand_init(void);
void nand_read(unsigned char *buf, unsigned long start_addr, int size); /* NAND Flash操作的总入口, 它们将调用S3C2410或S3C2440的相应函数 */
static void nand_reset(void);
static void wait_idle(void);
static void nand_select_chip(void);
static void nand_deselect_chip(void);
static void write_cmd(int cmd);
static void write_addr(unsigned int addr);
static unsigned char read_data(void); /* S3C2410的NAND Flash处理函数 */
static void s3c2410_nand_reset(void);
static void s3c2410_wait_idle(void);
static void s3c2410_nand_select_chip(void);
static void s3c2410_nand_deselect_chip(void);
static void s3c2410_write_cmd(int cmd);
static void s3c2410_write_addr(unsigned int addr);
static unsigned char s3c2410_read_data(); /* S3C2440的NAND Flash处理函数 */
static void s3c2440_nand_reset(void);
static void s3c2440_wait_idle(void);
static void s3c2440_nand_select_chip(void);
static void s3c2440_nand_deselect_chip(void);
static void s3c2440_write_cmd(int cmd);
static void s3c2440_write_addr(unsigned int addr);
static unsigned char s3c2440_read_data(void); /* S3C2410的NAND Flash操作函数 */ /* 复位 */
static void s3c2410_nand_reset(void)
{
s3c2410_nand_select_chip();
s3c2410_write_cmd(0xff); // 复位命令
s3c2410_wait_idle();
s3c2410_nand_deselect_chip();
} /* 等待NAND Flash就绪 */
static void s3c2410_wait_idle(void)
{
int i;
volatile unsigned char *p = (volatile unsigned char *)&s3c2410nand->NFSTAT;
while(!(*p & BUSY))
for(i=; i<; i++);
} /* 发出片选信号 */
static void s3c2410_nand_select_chip(void)
{
int i;
s3c2410nand->NFCONF &= ~(<<);
for(i=; i<; i++);
} /* 取消片选信号 */
static void s3c2410_nand_deselect_chip(void)
{
s3c2410nand->NFCONF |= (<<);
} /* 发出命令 */
static void s3c2410_write_cmd(int cmd)
{
volatile unsigned char *p = (volatile unsigned char *)&s3c2410nand->NFCMD;
*p = cmd;
} /* 发出地址 */
static void s3c2410_write_addr(unsigned int addr)
{
int i;
volatile unsigned char *p = (volatile unsigned char *)&s3c2410nand->NFADDR; *p = addr & 0xff;
for(i=; i<; i++);
*p = (addr >> ) & 0xff;
for(i=; i<; i++);
*p = (addr >> ) & 0xff;
for(i=; i<; i++);
*p = (addr >> ) & 0xff;
for(i=; i<; i++);
} /* 读取数据 */
static unsigned char s3c2410_read_data(void)
{
volatile unsigned char *p = (volatile unsigned char *)&s3c2410nand->NFDATA;
return *p;
} /* S3C2440的NAND Flash操作函数 */ /* 复位 */
static void s3c2440_nand_reset(void)
{
s3c2440_nand_select_chip();
s3c2440_write_cmd(0xff); // 复位命令
s3c2440_wait_idle();
s3c2440_nand_deselect_chip();
} /* 等待NAND Flash就绪 */
static void s3c2440_wait_idle(void)
{
int i;
volatile unsigned char *p = (volatile unsigned char *)&s3c2440nand->NFSTAT;
while(!(*p & BUSY))
for(i=; i<; i++);
} /* 发出片选信号 */
static void s3c2440_nand_select_chip(void)
{
int i;
s3c2440nand->NFCONT &= ~(<<);
for(i=; i<; i++);
} /* 取消片选信号 */
static void s3c2440_nand_deselect_chip(void)
{
s3c2440nand->NFCONT |= (<<);
} /* 发出命令 */
static void s3c2440_write_cmd(int cmd)
{
volatile unsigned char *p = (volatile unsigned char *)&s3c2440nand->NFCMD;
*p = cmd;
} /* 发出地址 */
static void s3c2440_write_addr(unsigned int addr)
{
int i;
volatile unsigned char *p = (volatile unsigned char *)&s3c2440nand->NFADDR; *p = addr & 0xff;
for(i=; i<; i++);
*p = (addr >> ) & 0xff;
for(i=; i<; i++);
*p = (addr >> ) & 0xff;
for(i=; i<; i++);
*p = (addr >> ) & 0xff;
for(i=; i<; i++);
} static void s3c2440_write_addr_lp(unsigned int addr)
{
int i;
volatile unsigned char *p = (volatile unsigned char *)&s3c2440nand->NFADDR;
int col, page; col = addr & NAND_BLOCK_MASK_LP;
page = addr / NAND_SECTOR_SIZE_LP; *p = col & 0xff; /* Column Address A0~A7 */
for(i=; i<; i++);
*p = (col >> ) & 0x0f; /* Column Address A8~A11 */
for(i=; i<; i++);
*p = page & 0xff; /* Row Address A12~A19 */
for(i=; i<; i++);
*p = (page >> ) & 0xff; /* Row Address A20~A27 */
for(i=; i<; i++);
*p = (page >> ) & 0x03; /* Row Address A28~A29 */
for(i=; i<; i++);
} /* 读取数据 */
static unsigned char s3c2440_read_data(void)
{
volatile unsigned char *p = (volatile unsigned char *)&s3c2440nand->NFDATA;
return *p;
} /* 在第一次使用NAND Flash前,复位一下NAND Flash */
static void nand_reset(void)
{
nand_chip.nand_reset();
} static void wait_idle(void)
{
nand_chip.wait_idle();
} static void nand_select_chip(void)
{
int i;
nand_chip.nand_select_chip();
for(i=; i<; i++);
} static void nand_deselect_chip(void)
{
nand_chip.nand_deselect_chip();
} static void write_cmd(int cmd)
{
nand_chip.write_cmd(cmd);
}
static void write_addr(unsigned int addr)
{
nand_chip.write_addr(addr);
} static unsigned char read_data(void)
{
return nand_chip.read_data();
} /* 初始化NAND Flash */
void nand_init(void)
{
#define TACLS 0
#define TWRPH0 3
#define TWRPH1 0 /* 判断是S3C2410还是S3C2440 */
if ((GSTATUS1 == 0x32410000) || (GSTATUS1 == 0x32410002))
{
nand_chip.nand_reset = s3c2410_nand_reset;
nand_chip.wait_idle = s3c2410_wait_idle;
nand_chip.nand_select_chip = s3c2410_nand_select_chip;
nand_chip.nand_deselect_chip = s3c2410_nand_deselect_chip;
nand_chip.write_cmd = s3c2410_write_cmd;
nand_chip.write_addr = s3c2410_write_addr;
nand_chip.read_data = s3c2410_read_data; /* 使能NAND Flash控制器, 初始化ECC, 禁止片选, 设置时序 */
s3c2410nand->NFCONF = (<<)|(<<)|(<<)|(TACLS<<)|(TWRPH0<<)|(TWRPH1<<);
}
else
{
nand_chip.nand_reset = s3c2440_nand_reset;
nand_chip.wait_idle = s3c2440_wait_idle;
nand_chip.nand_select_chip = s3c2440_nand_select_chip;
nand_chip.nand_deselect_chip = s3c2440_nand_deselect_chip;
nand_chip.write_cmd = s3c2440_write_cmd;
#ifdef LARGER_NAND_PAGE
nand_chip.write_addr = s3c2440_write_addr_lp;
#else
nand_chip.write_addr = s3c2440_write_addr;
#endif
nand_chip.read_data = s3c2440_read_data; /* 设置时序 */
s3c2440nand->NFCONF = (TACLS<<)|(TWRPH0<<)|(TWRPH1<<);
/* 使能NAND Flash控制器, 初始化ECC, 禁止片选 */
s3c2440nand->NFCONT = (<<)|(<<)|(<<);
} /* 复位NAND Flash */
nand_reset();
} /* 读函数 */
void nand_read(unsigned char *buf, unsigned long start_addr, int size)
{
int i, j; #ifdef LARGER_NAND_PAGE
if ((start_addr & NAND_BLOCK_MASK_LP) || (size & NAND_BLOCK_MASK_LP)) {
return ; /* 地址或长度不对齐 */
}
#else
if ((start_addr & NAND_BLOCK_MASK) || (size & NAND_BLOCK_MASK)) {
return ; /* 地址或长度不对齐 */
}
#endif /* 选中芯片 */
nand_select_chip(); for(i=start_addr; i < (start_addr + size);) {
/* 发出READ0命令 */
write_cmd(); /* Write Address */
write_addr(i);
#ifdef LARGER_NAND_PAGE
write_cmd(0x30);
#endif
wait_idle(); #ifdef LARGER_NAND_PAGE
for(j=; j < NAND_SECTOR_SIZE_LP; j++, i++) {
#else
for(j=; j < NAND_SECTOR_SIZE; j++, i++) {
#endif
*buf = read_data();
buf++;
}
} /* 取消片选信号 */
nand_deselect_chip(); return ;
}
uart.c 源码:
#include"uart.h" //uart
#define ULCON0 (*(volatile unsigned long *)0x50000000)
#define UCON0 (*(volatile unsigned long *)0x50000004)
#define UFCON0 (*(volatile unsigned long *)0x50000008)
#define UMCON0 (*(volatile unsigned long *)0x5000000c)
#define UTRSTAT0 (*(volatile unsigned long *)0x50000010)
#define UERSTAT0 (*(volatile unsigned long *)0x50000014)
#define UTXH0 (*(volatile unsigned char *)0x50000020)
#define URXH0 (*(volatile unsigned char *)0x50000024)
#define UBRDIV0 (*(volatile unsigned long *)0x50000028) //GPH
#define GPHCON (*(volatile unsigned long *)0x56000070)
#define GPHDAT (*(volatile unsigned long *)0x56000074)
#define GPHUP (*(volatile unsigned long *)0x56000078) void uart0_init(void)
{
GPHCON|=0xa0;
GPHUP=0x0c; ULCON0=0x03;
UCON0=0x05;
UFCON0=0x00;
UMCON0=0x00;
UBRDIV0=((/(*))-);
} unsigned char my_getchar(void)
{
while(!(UTRSTAT0 & 0x01));
return URXH0;
} void my_putchar(unsigned char date)
{
while(!(UTRSTAT0 & 0x02));
UTXH0=date;
} unsigned char getc(void)
{
while(!(UTRSTAT0 & 0x01));
return URXH0;
} void putc(unsigned char c)
{
while(!(UTRSTAT0 & 0x02));
UTXH0=c;
}
uart.h 源码:
#ifndef _UART_H_
#define _UART_H_ void uart0_init(void);
unsigned char my_getchar(void);
void my_putchar(unsigned char date); unsigned char getc(void);
void putc(unsigned char c); #endif
my_stdio.c 源码:
#include"uart.h"
#include"my_stdio.h" typedef char* va_list; #define int_sizeof(type) ((sizeof(int)+sizeof(type)-1)&~(sizeof(int)-1)) #define va_start(para_p,first_para) (para_p=(va_list)&first_para+int_sizeof(first_para))
#define va_arg(para_p,type) (*(type *)((para_p+=int_sizeof(type))-int_sizeof(type)))
#define va_end(para_p) (para_p=(va_list)0) void my_printf(const char *format, ...)
{
va_list temp ;
char *string = format;
va_start(temp, format); while (*string)
{
if (*string == '%')
{
switch (*++string)
{
case 'c': { my_putchar(va_arg(temp,char)); break; }
case 's':
{
char* p = va_arg(temp,char*);
while (*p != ) my_putchar(*p++);
break;
} case 'p':
{
unsigned int addr = (unsigned int)&va_arg(temp, unsigned int), sheft = 0xf0000000;
unsigned char temp = ,count=;
my_putchar('');
my_putchar('x');
while (count<)
{
temp = (unsigned char)(((sheft >> count)&addr) >> ( - count - )) ;
if (temp < ) my_putchar(temp + );
if (temp >= ) my_putchar(temp+-);
count += ;
}
break;
} case 'd':
{
int value = va_arg(temp, int),num=;
if (value == ) my_putchar();
if (value & 0x80000000) //负数
{
my_putchar('-');
num = -;
}
else //正数.;
while (!(value / num))
{
num /= ;
if (num == )
{
my_putchar();
return;
}
}
while (num != )
{
my_putchar(value / num+);
value %= num;
num /= ;
}
break;
} case 'f':
{
char *str = "Sorry: function is not available";
while (*str != ) my_putchar(*str++);
} default: break;
}
}
string++;
}
va_end(temp);
}
my_stdio.h 源码:
#ifndef _OWN_STDIO_H_
#define _OWN_STDIO_H_ void my_printf(const char *format,...); #endif
main.c 源码:
#include"uart.h"
#include"my_stdio.h"
#include"stdio.h" void raise(int sig_nr){;} int main(void)
{
uart0_init(); printf("%s"," wds_standard ");
my_printf("%s"," zsy_standard "); while()
my_putchar(my_getchar()+); return ;
}
链接脚本 uart.lds :
SECTIONS
{
. = 0x00000000;
.init : AT(){start.o init.o nand.o}
. = 0x30000000;
.text : AT(){*(.text)}
.rodata ALIGN() : AT((LOADADDR(.text)+SIZEOF(.text)+)&~(0x03)) {*(.rodata*)}
.data ALIGN() : AT((LOADADDR(.rodata)+SIZEOF(.rodata)+)&~(0x03)) {*(.data)}
.bss : {*(.bss) *(COMMON)} }
Makefile:
objs:= start.o init.o uart.o nand.o main.o my_stdio.o lib/libc.a CC =arm-linux-gcc
LD =arm-linux-ld
AR =arm-linux-ar
OBJCOPY =arm-linux-objcopy
OBJDUMP =arm-linux-objdump INCLUDEDIR :=$(shell pwd)/include
CFLAGS :=-Wall -O2
CPPFLAGS :=-nostdinc -I$(INCLUDEDIR) export CC LD OBJCOPY OBJDUMP INCLUDEDIR CFLAGS CPPFLAGS uart.bin:$(objs)
arm-linux-ld -Tuart.lds -o uart_elf $^ libgcc.a
arm-linux-objcopy -O binary -S uart_elf $@
arm-linux-objdump -D -m arm uart_elf > uart.dis .PHONY:lib/libc.a
lib/libc.a:
cd lib;make;cd .. %.o:%.s
$(CC) $(CPPFLAGS) $(FLAGS)-o $@ -c $< %.o:%.c
$(CC) $(CPPFLAGS) $(FLAGS) -o $@ -c $< clean:
make clean -C lib
rm -f *.o *.bin *.dis uart_elf
用uart实现printf函数的更多相关文章
- 可变参数列表与printf()函数的实现
问题 当我们刚开始学习C语言的时候,就接触到printf()函数,可是当时"道行"不深或许不够细心留意,又或者我们理所当然地认为库函数规定这样就是这样,没有发现这个函数与普通的函数 ...
- 如何在单片机上使用printf函数(printf)(avr)(stm)(lpc)(单片机)(转)
摘要: 当我们在调试代码时,通常需要将程序中的某个变量打印至PC机上,来判断我们的程序是否按预期的运行,printf函数很好的做到了这一点,它能直接以字符的方式输出变量名和变量的值,printf ...
- 如果简化stm32中printf函数的使用——首先重定向
STM32单片机极简方法 使用宏定义 代替复杂的重定向printf()函数,实现串口打印.(HAL库例程)https://blog.csdn.net/wu10188/article/details/9 ...
- 通过串口利用printf函数输出数据
一.printf函数格式 printf函数具有强大的输出功能 %表示格式化字符串输出 目前printf支持以下格式的输出,例如: printf("%c",a);输出单个字符. pr ...
- printf函数
printf函数的格式及含义 d 以十进制带符号的形式输出整数(对正数不输出符号) o 以八进制无符号的形式输出整数(不输出 ...
- Linux Linux下特殊的printf函数和fputs函数
Linux下,printf函数必须以'\n'结尾才会立刻输出到屏幕,如果没有'\n'直到输出缓冲区满了以后才会打印到屏幕上(敲击换行也算),如果需要不换行的输出,一般可以使用write函数代替.'\n ...
- 关于printf函数的所思所想
缘起大一下学期,C语言程序设计徐小青老师的随口一提,经娄嘉鹏老师提醒,我觉得应该自己整理清楚这一问题.涉及网上资料将会标明出处. 关于printf函数的所思所想 * printf的定义 printf( ...
- C语言printf()函数:格式化输出函数
C语言printf()函数:格式化输出函数 头文件:#include <stdio.h> printf()函数是最常用的格式化输出函数,其原型为: int printf( char ...
- 关于printf函数输出先后顺序的讲解!!
对于printf函数printf("%d%d\n",a,b);函数的实际输出顺序是这样的先计算出b,然后在计算a,接着输出a,最后在输出b:例子如下:#include<ios ...
随机推荐
- git push 失败
先上图 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvV29KaWFvRGFaaG9uZw==/font/5a6L5L2T/fontsize/400/fil ...
- Python 的 Magic Methods 指南(转)
介绍 本指南是数月博客的总结.主题是魔术方法. 什么是魔术方法呢?它们是面向对象Python语言中的一切.它们是你可以自定义并添加“魔法”到类中的特殊方法.它们被双下划线环绕(比如__init__或_ ...
- pca , nmds , pcoa 图添加分组的椭圆
对于pca , nmds, pcoa 这些排序分析来说,我们可以从图中看出样本的排列规则,比如分成了几组. 为例样本分组更加的直观,我们可以根据实验设计时的样本分组情况,对属于同一个group的样本添 ...
- struts建立工程helloworld
Java web环境:Tomcat + Jdk +eclipse java EE 创建一个能运行的java web工程,记得勾选上web.xml 下载struts库,目前最新2.5-2.16 all. ...
- [Node.js] 08 - Web Server and REST API
有了 [Node.js] 07 - Html and Http 作为基础,再继续下面的内容. Node.js 路由 Node.js GET/POST请求 Node.js Web 模块 Node.js ...
- actor 内最好不要阻塞
1. 在使用 akka cluster singleton 时,我需要知道被创建的 singleton proxy 的 actorRef,通过绝对路径加 actorSelection 方法,应该很容易 ...
- PHP_CodeSniffer HG 服务端部署篇
环境:CentOs 6.7 语言:PHP5.4 PHP_CodeSniffer: https://github.com/phpdragon/PHP_CodeSniffer 本地代码检测请查看该文章:h ...
- docker 怎么下载指定版本的镜像文件
在使用Docker时我想pull远端仓库的CentOS 6的镜像,但是我直接搜索下载下来的是最新的版本.那我有没有什么办法直接下载Centos6呢? 方法: 直接上 hub.docker.com 查 ...
- SQL逻辑查询语句执行顺序 需要重新整理
一.SQL语句定义顺序 1 2 3 4 5 6 7 8 9 10 SELECT DISTINCT <select_list> FROM <left_table> <joi ...
- python多行代码简化
python中,可以把多行代码简化为一行,把for循环和if条件判断都集中到一行里来写,示例如下: >>> from nltk.corpus import stopwords > ...