理解AXI Quad Serial Peripheral Interface(SPI) IP核
reference : PG153-AXI Quad SPI v3.2 LogiCORE IP Product Guide.pdf
在使用MicroBlaze过程中,调用了此IP,所以有必须仔细学习下;
名词:
XIP: eXecute In Place
Motorola M68HC11
支持特性:
*可配置的AXI4接口
*支持对DRR/DTR FIFO的突发操作;
*支持可配置的XIP模式操作;
*支持AXI4-Lite或者AXI4接口连接的32bit Slave;
*支持可配置的SPI模式:标准、双、四模式;
*可编程的SPI时钟相位和极性;
*可配置的FIFO深度,16、256深度;对XIP模式只支持64深度;
*Configurable slave Memories in dual and quad modes are: Mixed,Micro,Winbond,and Spansion;
*AXI 接口选项:
XIP 模式: 使能AXI4 和 AXI4-Lite接口,地址模式可以选择24bit和32bit;
Performance 模式:使能AXI4接口;使用AXI4接口可以在核的发送和接收FIFO地址处启用突发功能。当不使能performance模式时,AXI4-Lite将被使用。
*SPI 选项
模式可以选择: standard/dual/quad
Transacton Width: 8/16/32
频率比率:2~2048, 代表了SPI的sck = ext_spi_clk/ratio ;
NO. of Slave: 代表了slave的个数;1~32;
*寄存器:
AXI4-Lite写访问寄存器由32位AXI写数据(* _wdata)信号更新,不受AXI写数据选通(* _wstrb)信号的影响。对于写入,AXI写地址有效(* _awvalid)和AXI写数据有效(* _wvalid)信号需要同时有效。
表2-3显示了适用的寄存器集,无论是否使能Performance Mode,或禁止XIP模式。应单独访问某些AXI Quad SPI内核寄存器。这些寄存器是可配置的,可通过AXI4-Lite接口或AXI4接口(增强模式)访问。 所有寄存器都以32位的形式访问。
如果访问不存在的寄存器,它们将返回OKAY响应。 这些寄存器的读取返回0,写入没有任何影响。
*SPISRR: 写入0xA,进行软件复位;
*SPICR
*SPISR
*SPI DTR:
After the SPE bit is set to 1 in master mode or spisel is active in the slave mode,the data is transferred from the SPI DTR to the shift register.
1. DN-1位始终表示MSB位,与LSB优先或MSB优先传输选择无关。 当传输宽度参数为8或16时,未使用的高位((AXI数据宽度-1)到N)被保留。
2.在标准SPI模式下,根据内核配置,该寄存器的宽度可以是8或16或32。 在双通道或四通道SPI模式下,该寄存器为8位宽。
*SPI DRR
SPI数据接收寄存器(SPI DRR)用于读取从SPI总线接收的数据。 这是一个双缓冲寄存器。 每次完成传输后,接收的数据将被放入该寄存器中。 SPI架构没有为从设备提供任何方法来限制总线上的流量; 因此,只有在最后一次SPI传输之前读取了SPI DRR时,才会在每次完成的事务后更新SPI DRR。如果未读取SPI DRR且已满,则最近传输的数据将丢失并发生接收溢出中断。 主SPI设备也会出现相同的情况。
在标准模式下,读取空DRR FIFO会返回从错误。
*SPISSR:
SPI从选择寄存器(SPISSR)包含一个长度为N的低有效,one-hot编码的slave选择矢量SS,其中N是从机数。
SS向量占据寄存器的最右位。 最多将一位置为低电平。 该位表示本地主站与之通信的从站。 SPISSR中的位分配如图2-6所示,并在表2-9中进行了描述
*TX_FIFO_OCY:
仅当AXI Quad SPI内核配置了FIFO(FIFO深度= 16或256)时,才会出现SPI发送FIFO占用寄存器(TX_FIFO_OCY)。 如果它存在且发送FIFO不为空,则寄存器包含一个四位右对齐值,该值比FIFO中的元素数少一(占用率减1)。
该寄存器是只读的。 写入时,或当FIFO为空时读取,寄存器内容不受影响。 确定发送FIFO为空/满的唯一可靠方法是读取SPI状态寄存器中的Tx_Empty / Tx_Full状态位或中断状态寄存器中的DTR空位。
*RX_FIFO_OCY:
仅当AXI Quad SPI内核配置了FIFO(FIFO深度= 16或256)时,才会出现SPI接收FIFO占用寄存器(RX_FIFO_OCY)。 如果寄存器存在且接收FIFO不为空,则寄存器包含一个四位右对齐值,该值比FIFO中的元素数少一(占用率减1)。
该寄存器是只读的。 写入(或FIFO为空时的读取)不会影响寄存器内容。 确定接收FIFO为空/满的唯一可靠方法是读取SPI状态寄存器中的Rx_Empty / Rx_Full状态位。
*DGIER
默认[31]=0,全局使能处于disable状态;
*IPISR
根据系统是否配置了FIFO,以及是否配置为主模式或从模式,最多可以有14种独特的中断条件。
没有FIFO的系统有七个中断。 中断控制器中的32位中断状态寄存器可以独立使能每个中断。 IP中断状态寄存器(IPISR)收集所有中断事件。 中断寄存器是一个读/写切换寄存器。 将1写入寄存器中的位位置会导致相应的位切换。 所有寄存器位在复位时清零。
*IPIER
中断允许寄存器(IPIER)寄存器允许系统中断输出有效。 如果IPISR寄存器中的有效位对应于IPIER寄存器中的使能位,则会产生该中断。 IPIER寄存器对IPISR的每个定义位都有一个使能位。 所有位在复位时清零。
* 编程顺序:
写使能命令顺序:
1.通过置位SPICR(60h)的主禁止位来禁用主事务,并通过SPICR复位RX和TX FIFO。
示例:将0x1E6写入SPICR
2.通过将0x06写入SPIDTR来发出write enable命令。
3.通过向SPISSR(70h)写入0x00来发出芯片选择。
4.通过置低SPICR主禁止位来使能主事务。
5.通过将0x01写入SPISSR来置低片选。
6.通过置位SPICR主禁止位来禁用主事务。
擦除命令序列:
1.通过SPICR复位RX和TX FIFO。
2.将扇区擦除命令(a)发送到SPIDTR以擦除闪存扇区地址后面的任何特定扇区或发出批量擦除命令(a)擦除整个闪存
然后是flash基地址。
示例:将0xD8写入SPIDTR
3.通过向SPISSR写入0x00来发出芯片选择。
4.通过置低SPICR主禁止位来使能主事务。
5.通过将0x01写入SPISSR来置低片选。
6.通过置位SPICR主禁止位来禁用主事务。
写数据命令序列:
1.通过SPICR复位RX和TX FIFO。
2.将写入数据命令(a)(b)发送到SPIDTR,以将数据写入任何特定扇区
其次是闪存扇区地址。
3.使用要写入闪存的数据填充SPIDTR; 最大数据大小取决于
配置的QSPI FIFO大小。
4.通过向SPISSR写入0x00来发出芯片选择。
5.通过置低SPICR主禁止位来使能主事务。
6.通过将0x01写入SPISSR来置低片选。
7.通过置位SPICR主禁止位来禁用主事务。
读取数据命令序列:
1.通过SPICR复位RX和TX FIFO。
2.将读取数据命令(a)(b)发送到SPIDTR以从任何特定扇区读取数据
其次是闪存扇区地址。
3.使用虚拟数据填充SPIDTR以从闪存中读取所需数据。
4.通过向SPISSR(70h)写入0x00来发出芯片选择。
5.通过置低SPICR主禁止位来使能主事务。
6.通过将0x01写入SPISSR来置低片选。
7.通过置位SPICR主禁止位来禁用主事务
8.读取SPIDRR,以获取从SPI总线接收的读取数据。
a.参见相应的SPI Slave(闪存)数据表,了解要发出的命令。
b.写入/读取命令因使用的模式(标准/双/四)而异。
推荐:https://www.cnblogs.com/chensimin1990/p/8526497.html#4105474
理解AXI Quad Serial Peripheral Interface(SPI) IP核的更多相关文章
- SPI通讯(Serial Peripheral interface)
1. SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线:SCLK,MISO,MOSI,CS 2. SPI结构简图: 可以看出,SPI主从设备两端都有一个位移寄存器,数据在位 ...
- 自定义AXI总线形式SPI接口IP核,点亮OLED
一.前言 最近花费很多精力在算法仿真和实现上,外设接口的调试略有生疏.本文以FPGA控制OLED中的SPI接口为例,重新夯实下基础.重点内容为SPI时序的RTL设计以及AXI-Lite总线分析.当然做 ...
- Altera FIFO IP核时序说明
ALTERA在LPM(library of parameterized mudules)库中提供了参数可配置的单时钟FIFO(SCFIFO)和双时钟FIFO(DCFIFO).FIFO主要应用在需要数据 ...
- 从Xilinx FFT IP核到OFDM
笔者在校的科研任务,需要用FPGA搭建OFDM通信系统,而OFDM的核心即是IFFT和FFT运算,因此本文通过Xilinx FFT IP核的使用总结给大家开个头,详细内容可查看官方文档PG109.关于 ...
- FPGA基础学习(2) -- FIFO IP核(Quartus)
ALTERA在LPM(library of parameterized mudules)库中提供了参数可配置的单时钟FIFO(SCFIFO)和双时钟FIFO(DCFIFO).FIFO主要应用在需要数据 ...
- AXI Quad SPI
AXI Quad SPI 信息来源
- 一步一步学ZedBoard & Zynq(四):基于AXI Lite 总线的从设备IP设计
本帖最后由 xinxincaijq 于 2013-1-9 10:27 编辑 一步一步学ZedBoard & Zynq(四):基于AXI Lite 总线的从设备IP设计 转自博客:http:// ...
- xilinx AXI相关IP核学习
xilinx AXI相关IP核学习 1.阅读PG044 (1)AXI4‐Stream to Video Out Top‐Level Signaling Interface (2)AXI4‐Stream ...
- 第7讲 SPI和RAM IP核
学习目的: (1) 熟悉SPI接口和它的读写时序: (2) 复习Verilog仿真语句中的$readmemb命令和$display命令: (3) 掌握SPI接口写时序操作的硬件语言描述流程(本例仅以写 ...
随机推荐
- LeetCode--007--整数反转(java)
给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转. 示例 1: 输入: 123 输出: 321 示例 2: 输入: -123 输出: -321 示例 3: 输入: 120 输出 ...
- android -------- 错误Attribute application@allowBackup value=(true) from AndroidManifest.xml
开发中遇到一个问题,运行项目时,出现了一个这如下这样的问题 问题: Manifest merger failed : Attribute application@allowBackup value=( ...
- Confluence 6 空间
什么是一个空间? Confluence 空间是包含有页面和博客页面的容器.你也可以将空间认为是对你工作中可以使用的 2 中类型的目录. 在 Confluence 中有下面 2 种空间类型: 站点空间( ...
- Power Of Two leetcode java
问题描述: Given an integer, write a function to determine if it is a power of two. 问题分析:给定一个数,判断它是不是2的幂. ...
- POJ No.2386 Lake Counting
题目链接:http://poj.org/problem?id=2386 分析:八联通的则为水洼,我们则需遍历一个单位附近的八个单位并将它们都改成'.',但附近单位可能仍连接着有'W'的区域,这种情况下 ...
- 『计算机视觉』Mask-RCNN_推断网络其六:Mask生成
一.Mask生成概览 上一节的末尾,我们已经获取了待检测图片的分类回归信息,我们将回归信息(即待检测目标的边框信息)单独提取出来,结合金字塔特征mrcnn_feature_maps,进行Mask生成工 ...
- 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上
总结一下相关概念: torch.Tensor - 一个近似多维数组的数据结构 autograd.Variable - 改变Tensor并且记录下来操作的历史记录.和Tensor拥有相同的API,以及b ...
- K8S各知识点整理
一.k8s组成部分 Master 1. kube-apiserver 封装了核心对象的增删改查操作,以REST API接口方式提供给外部和内部组件调用.它维护的REST对象将持久化到Etcd中 2 ...
- CF-517B-DP
http://codeforces.com/contest/1072/problem/B 给出两个数列 a,b 长度为n-1 ,询问是否能构造出一个长度为n的数列t,使得 所有的ab都满足 a[i] ...
- hdu-6397-容斥
Character Encoding Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Oth ...