Sorting It All Out
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions:39731   Accepted: 13975

Description

An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.

Input

Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.

Output

For each problem instance, output consists of one line. This line should be one of the following three:

Sorted sequence determined after xxx relations: yyy...y. 
Sorted sequence cannot be determined. 
Inconsistency found after xxx relations.

where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.

Sample Input

4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0

Sample Output

Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.

Source

题意:

给定关于n个字母的对应优先级关系,问是否可以根据优先级对他们进行排序。并且要求输出是在第几组可以得出结果。

会有优先级不一致和无法排序的情况。

思路:

感觉这题数据很迷啊,m的范围都不给我都不好估计复杂度。

以及,要注意输出时候的句号。特别是可以sort的时候。

是一道传递闭包的问题,用邻接矩阵建图,如果$A<B$,则表示$A$到$B$有一条有向边,$g['A']['B'] = 1$

每次添加一个关系,使用一次floyd计算能否得出结果,或者是否出现不一致。

输出排序结果的时候,其实只需要比较每个点的入度,按照入度从大到小排序就行了。

因为最后的矩阵是一个传递闭包,最小的那个字母肯定小于其他所有字母,也就是说他这一行会有$n-1$个$1$

 #include<iostream>
//#include<bits/stdc++.h>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<set>
#include<climits>
using namespace std;
typedef long long LL;
#define N 100010
#define pi 3.1415926535
#define inf 0x3f3f3f3f int n, m;
int g[][], tmpg[][]; int floyd()
{
for(int i = ; i < n; i++){
for(int j = ; j < n; j++){
tmpg[i][j] = g[i][j];
}
}
for(int k = ; k < n; k++){
for(int i = ; i < n; i++){
for(int j = ; j < n; j++){
tmpg[i][j] |= tmpg[i][k] & tmpg[k][j];
if(tmpg[i][j] == tmpg[j][i] && tmpg[i][j] == && i != j){
return -;
}
}
}
}
for(int i = ; i < n; i++){
for(int j = ; j < n; j++){
if(tmpg[i][j] == tmpg[j][i] && tmpg[i][j] == && i != j){
return ;
}
}
}
return ;
} struct node{
int deg;
char ch;
};
bool cmp(node a, node b)
{
return a.deg > b.deg;
} void print()
{
//int deg[30];
//memset(deg, 0, sizeof(deg));
node character[];
for(int i = ; i < n; i++){
character[i].deg = ;
character[i].ch = 'A' + i;
}
for(int i = ; i < n; i++){
for(int j = ; j < n; j++){
if(tmpg[i][j]){
character[i].deg++;
}
}
}
sort(character, character + n, cmp);
for(int i = ; i < n; i++){
printf("%c", character[i].ch);
}
printf(".\n"); /*queue<int>que;
for(int i = 0; i < n; i++){
printf("%d\n", deg[i]);
if(!deg[i]){
que.push(i);
break;
}
}
for(int i = 0; i < n; i++){
int x = que.front();que.pop();
printf("%c", x + 'A');
for(int k = 0; k < n; k++){
if(tmpg[k][x])deg[k]--;
if(!deg[k])que.push(k);
}
}*/
} int main()
{
while(scanf("%d%d", &n, &m) != EOF && n || m){
memset(g, , sizeof(g));
/*for(int i = 0; i < n; i++){
g[i][i] = 1;
}*/ int i;
bool dont = false;
for(i = ; i <= m; i++){
char a, b;
getchar();
scanf("%c<%c", &a, &b);
g[a - 'A'][b - 'A'] = ;
if(!dont){
int flag = floyd();
if(flag == -){
printf("Inconsistency found after %d relations.\n", i);
dont = true;
}
else if(flag == ){
printf("Sorted sequence determined after %d relations: ", i);
print();
dont = true;
}
}
}
if(i > m && !dont){
printf("Sorted sequence cannot be determined.\n");
}
}
return ;
}

poj1094 Sorting It All Out【floyd】【传递闭包】【拓扑序】的更多相关文章

  1. POJ3660:Cow Contest(Floyd传递闭包)

    Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16941   Accepted: 9447 题目链接 ...

  2. UVA 247 电话圈 (floyd传递闭包 + dfs输出连通分量的点)

    题意:输出所有的环: 思路:数据比较小,用三层循环的floyd传递闭包(即两条路通为1,不通为0,如果在一个环中,环中的所有点能互相连通),输出路径用dfs,递归还没有出现过的点(vis),输出并递归 ...

  3. UVA 753 UNIX 插头(EK网络流+Floyd传递闭包)

    UNIX 插头 紫书P374 [题目链接]UNIX 插头 [题目类型]EK网络流+Floyd传递闭包 &题解: 看了书之后有那么一点懂了,但当看了刘汝佳代码后就完全明白了,感觉他代码写的好牛逼 ...

  4. UVA 247 电话圈(Floyd传递闭包+输出连通分量)

    电话圈 紫书P365 [题目链接]电话圈 [题目类型]Floyd传递闭包+输出连通分量 &题解: 原来floyd还可以这么用,再配合连通分量,简直牛逼. 我发现其实求联通分量也不难,就是for ...

  5. POJ 3660 Cow ContestCow(Floyd传递闭包)题解

    题意:给出m个关系,问你能确定机头牛的排名 思路:要确定排名那必须要把他和其他n-1头牛比过才行,所以Floyd传递闭包,如果赢的+输的有n-1就能确定排名. 代码: #include<cstd ...

  6. nyoj 211——Cow Contest——————【floyd传递闭包】

    Cow Contest 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 N (1 ≤ N ≤ 100) cows, conveniently numbered 1.. ...

  7. POJ 2594 —— Treasure Exploration——————【最小路径覆盖、可重点、floyd传递闭包】

    Treasure Exploration Time Limit:6000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64 ...

  8. POJ 3660—— Cow Contest——————【Floyd传递闭包】

    Cow Contest Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit  ...

  9. BZOJ 1612 [Usaco2008 Jan]Cow Contest奶牛的比赛:floyd传递闭包

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1612 题意: 有n头牛比赛. 告诉你m组(a,b),表示牛a成绩比牛b高. 保证排名没有并 ...

  10. POJ-2594 Treasure Exploration floyd传递闭包+最小路径覆盖,nice!

    Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 8130   Accepted: 3 ...

随机推荐

  1. Android——TabHost(标签容器)相关知识总结贴

    android 2.3 r1 中文 api (58) —— TabHost http://www.apkbus.com/android-18911-1-1.html   android中文api (5 ...

  2. redis性能测试报告

    服务器配置:16核心,64G 250个并发读:250个并发写性能[内容8千byte] 163为读:164为写:

  3. Axure RP for Mac(网站交互式原型设计工具)破解版安装

    1.软件简介    Axure RP 是 macOS 系统上一款最知名和最强大的原型设计工具,增加了大量新的特性,如应用多个动画,并同一时间运行一个小部件,如褪色,同时移动等,而且具有全新的图标和界面 ...

  4. 12C -- DDL日志

    DDL日志和alert日志有相似的格式和行为.但是只包含DDL语句日志.oracle只是为数据库组件提供DDL日志,且需要将参数enable_ddl_logging设置为true. 在DDL日志中,每 ...

  5. SNF快速开发平台MVC-EasyUI3.9之-ueditor富文本编辑在 asp.net MVC下使用步骤

    mvc项目中用到了这个富文本编辑就试着把遇到的问题个使用步骤在这里记录一下,希望大家少走弯路. 1.首先我们先下载net版本的uediot 2.然后把整个文档拷贝到我们的项目中,记得是整个 把下载的文 ...

  6. 【Big Data - ELK】ELK(ElasticSearch, Logstash, Kibana)搭建实时日志分析平台

    摘要: 前段时间研究的Log4j+Kafka中,有人建议把Kafka收集到的日志存放于ES(ElasticSearch,一款基于Apache Lucene的开源分布式搜索引擎)中便于查找和分析,在研究 ...

  7. 【ARM】arm系列知识框架

    [ARM编程模型] 硬件: 电路原理图 软件: 体系结构, 指令集, 寄存器组 [ARM编程技术] 汇编/C语言 编译, 链接, 烧写和调试 windows: MDK linux  : gcc [AR ...

  8. Android Studio 运行出现 Multiple dex files define Landroid/support/annotation/AnimRes 解决方法

    引入的工程的android-support-v4.jar版本跟自己工程的android-support-v4.jar的版本不一样

  9. 基音检测算法的性能:Performance Evaluation of Pitch Detection Algorithms

    http://access.feld.cvut.cz/view.php?cisloclanku=2009060001 Vydáno dne 02. 06. 2009 (15123 přečtení) ...

  10. FTP实验

    一.安装 sudo apt-get install vsftpd service vsftpd start 启动vsftpd服务 如果在不设置任何的情况下,可以以匿名的方式访问该ftp. 这时候你可以 ...