最大流算法-最高标号预流推进(HLPP)
昨天我们学习了ISAP算法,它属于增广路算法的大类。今天学习的算法是预流推进算法中很高效的一类——最高标号预流推进(HLPP)。
预流推进
预流推进是一种很直观的网络流算法。如果给到一个网络流让你手算,一般的想法是从源点开始流,遇到不够的就减掉,一直往前推到汇点。这就是预流推进算法的基本思想。
每个节点是一个储水池,最开始源点有无限多的水。用一个队列维护需要处理的点。最开始把源点加进去,对于每一个当前点,我们把将这个点水池中有的流量沿着边(水管)推到相邻的点,然后把相邻的点加入队列中。
算法思想如此,但其中有一个问题:这样做有可能出现两个点一个推过来一个推回去,结果就死循环了。这时候我们给每个点引入一个高度来解决这个问题。
源点的高度为\(n\),汇点的高度为\(0\),其他点初始高度为0,我们规定,水往下一层流,即我们只推\(h[x]=h[v]+1\)的边\((x,v)\)。
如果一个点还有水,但是却无法推出去,即周围的点都比他高,那么我们就抬高这个点,因为\(h\)值是连续的,所以每次出现这种情况我们就给它加一。如果这个点根本就流不出去,那么最后它会被抬高到\(n+1\)的高度,回流给源点。
最高标号
Tarjan和Goldberg在1986年提出了最高标号预留推进算法,即把普通队列换成优先队列,每次取出高度最高的那个来推进。Cheriyan和Maheshwari在1988年证明了这样做的复杂度为\(O(n^2\sqrt m)\)。
优化
喜闻乐见的gap优化,但和ISAP的形式不太一样。如果我们发现在给一个点抬高1的高度的时候,这个点原来的高度已经没有点了,那么我们直接把大于这个高度的点全部设为高度\(n+1\),让他们回流到源点去,因为根据算法,他们无法再有机会把水推到汇点(为什么不能有下面一个点抬上来形成路径呢?因为一个点的高度是所有相邻点高度最小值加一,所以不可能出现这种情况)。
代码
依然是poj1273模版题,然而poj今天好像挂了。hdu1532是同一题。
实测中ISAP跑得快,我估计是因为ISAP的复杂度上界非常松,而HLPP的上界是很紧的,导致ISAP随机下跑得超级快。
#include<cstdio>
#include<cstring>
#include<cctype>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;
int read() {
int x=0,f=1;
char c=getchar();
for (;!isdigit(c);c=getchar()) if (c=='-') f=-1;
for (;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int maxn=1e3+10;
const int maxm=1e6+10;
const int inf=2147483646;
vector<int> inv[maxn];
struct edge {
int v,w,nxt;
} e[maxm<<1];
int h[maxn],tot,d[maxn],n,m,prs[maxn],gap[maxn];
bool able[maxn];
void add(int u,int v,int w) {
e[++tot]=(edge){v,w,h[u]};
h[u]=tot;
e[++tot]=(edge){u,0,h[v]};
h[v]=tot;
}
struct cmp {
int x,h;
cmp (int x=0,int h=0):x(x),h(h) {}
inline bool operator < (const cmp &a) const {return h<a.h;}
};
priority_queue<cmp> pq;
bool push(int x,int y,int p) {
int w=min(prs[x],e[p].w);
e[p].w-=w,e[p^1].w+=w,prs[x]-=w,prs[y]+=w;
return w;
}
void Gap(int l,int s,int t) {
for (int i=1;i<=n;++i) if (i!=s && i!=t && l<d[i] && d[i]<=n) d[i]=n+1;
}
int maxflow(int s,int t) {
while (!pq.empty()) pq.pop();
memset(prs,0,sizeof prs),memset(d,0,sizeof d),memset(gap,0,sizeof gap);
d[s]=n,prs[s]=inf,pq.push(cmp(s,d[s]));
while (!pq.empty()) {
int x=pq.top().x;
pq.pop();
if (!prs[x]) continue;
for (int i=h[x],v=e[i].v;i;i=e[i].nxt,v=e[i].v) if ((x==s || d[x]==d[v]+1) && push(x,v,i) && v!=t && v!=s) pq.push(cmp(v,d[v]));
if (x!=s && x!=t && prs[x]) {
if (!(--gap[d[x]])) Gap(d[x],s,t);
++gap[++d[x]];
pq.push(cmp(x,d[x]));
}
}
return prs[t];
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
freopen("my.out","w",stdout);
#endif
while (~scanf("%d%d",&m,&n)) {
memset(h,0,sizeof h),tot=1;
for (int i=1;i<=m;++i) {
int x=read(),y=read(),w=read();
if (!w) continue;
add(x,y,w);
}
int ans=maxflow(1,n);
printf("%d\n",ans);
}
return 0;
}
最大流算法-最高标号预流推进(HLPP)的更多相关文章
- 网络最大流算法—最高标号预流推进HLPP
吐槽 这个算法.. 怎么说........ 学来也就是装装13吧.... 长得比EK丑 跑的比EK慢 写着比EK难 思想 大家先来猜一下这个算法的思想吧:joy: 看看人家的名字——最高标号预留推进 ...
- ZOJ-2364 Data Transmission 分层图阻塞流 Dinic+贪心预流
题意:给定一个分层图,即只能够在相邻层次之间流动,给定了各个顶点的层次.要求输出一个阻塞流. 分析:该题直接Dinic求最大流TLE了,网上说采用Isap也TLE,而最大流中的最高标号预流推进(HLP ...
- 最大流算法-ISAP
引入 最大流算法分为两类,一种是增广路算法,一种是预留推进算法.增广路算法包括时间复杂度\(O(nm^2)\)的EK算法,上界为\(O(n^2m)\)的Dinic算法,以及一些其他的算法.EK算法直接 ...
- 最大流算法之ISAP
序: 在之前的博文中,我解释了关于最大流的EK与Dinic算法,以及它们的STL/非STL的实现(其实没什么区别).本次讲解的是ISAP算法.'I',指 inproved,也就是说ISAP其实是SAP ...
- 常用限流算法与Guava RateLimiter源码解析
在分布式系统中,应对高并发访问时,缓存.限流.降级是保护系统正常运行的常用方法.当请求量突发暴涨时,如果不加以限制访问,则可能导致整个系统崩溃,服务不可用.同时有一些业务场景,比如短信验证码,或者其它 ...
- Ford-Fulkerson 最大流算法
流网络(Flow Networks)指的是一个有向图 G = (V, E),其中每条边 (u, v) ∈ E 均有一非负容量 c(u, v) ≥ 0.如果 (u, v) ∉ E 则可以规定 c(u, ...
- 算法9-5:最大流算法的Java代码
残留网络 在介绍最大流算法之前先介绍一下什么是残留网络.残余网络的概念有点类似于集合中的补集概念. 下图是残余网络的样例. 上面的网络是原始网络.以下的网络是计算出的残留网络.残留网络的作用就是用来描 ...
- 图论算法-最小费用最大流模板【EK;Dinic】
图论算法-最小费用最大流模板[EK;Dinic] EK模板 const int inf=1000000000; int n,m,s,t; struct node{int v,w,c;}; vector ...
- 海量数据挖掘MMDS week3:流算法Stream Algorithms
http://blog.csdn.net/pipisorry/article/details/49183379 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
随机推荐
- JDK源码分析(3)HashMap
JDK版本 HashMap简介 HashMap基于哈希表的 Map 接口的实现.此实现提供所有可选的映射操作,并允许使用 null 值和 null 键.(除了不同步和允许使用 null 之外,Hash ...
- 利用快排partition求前N小的元素
求前k小的数,一般人的想法就是先排序,然后再遍历,但是题目只是求前N小,没有必要完全排序,所以可以想到部分排序,而能够部分排序的排序算法我能想到的就是堆排序和快排了. 第一种思路,局部堆排序. 首先, ...
- HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)
HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...
- CF294C Shaass and Lights
题目大意: 有n盏灯,(0<=n<=1000),有m盏已经点亮,每次只能点亮与已经点亮的灯相邻的灯,求总方案数,答案对1e9+7取模 第一行:两个整数n,m表示灯的总数和已点亮的灯的数目 ...
- 02-css的选择器
css的选择器:1.基本选择器 2.高级选择器 基本选择器包含: 1.标签选择器 标签选择器可以选中所有的标签元素,比如div,ul,li ,p等等,不管标签藏的多深,都能选中,选中的是所有的,而不是 ...
- 关于表单----html杂记
前言:总结了一些关于表单的东西,发下内心的感慨,以前感觉自己什么都会,今天竟然连最基本的表单的东西都忘了,好丢人, 学习的过程中,切勿眼高手低,一定要做好自己的笔记,然后多写代码,多想为什么,我比较笨 ...
- jenkins Pipeline 使用
说明 Jenkins pipeline 是一套插件,支持将连续输送管道实施和整合到Jenkins.Pipeline提供了一组可扩展的工具,用于通过管道DSL为代码创建简单到复杂的传送流水线.他目前支持 ...
- javascript 体验倒计时:距离国庆还有多长时间
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Linux记录-shell一行代码杀死进程(收藏)
ps -ef |grep hello |awk '{print $2}'|xargs kill -9
- JVM锁简介:偏向锁、轻量级锁和重量级锁
转自:https://www.aimoon.site/blog/2018/05/21/biased-locking/ 比较复杂,简略见另一篇:https://www.cnblogs.com/twohe ...