Deep Reinforcement Learning Based Trading Application at JP Morgan Chase

https://medium.com/@ranko.mosic/reinforcement-learning-based-trading-application-at-jp-morgan-chase-f829b8ec54f2

FT released a story today about the new application that will optimize JP Morgan Chase trade execution ( Business Insider article on the same topic for readers that do not have FT subscription ). The intent is to reduce market impact and provide best trade execution results for large orders.

It is a complex application with many moving parts:

 

Its core is an RL algorithm that learns to perform the best action ( choose optimal price, duration and order size ) based on market conditions. It is not clear if it is Sarsa ( On-Policy TD Control) or Q-learning (Off-Policy Temporal Difference Control Algorithm ) as both algorithms are present in JP Morgan slides:

 

Sarsa

 

Q-learning

State consists of price series, expected spread cost, fill probability, size placed, as well as elapsed time, %progress, etc. Rewards are immediate rewards ( price spread ) and terminal ( end of episode ) rewards like completion, order duration and market penalties ( obviously those are negative rewards that punish the agent along these dimensions ).

 

Actions are memorized as weights of a Deep Neural Network — function approximation via NN is used since state, action space is too big to be handled in tabular form. We assume stochastic gradient descent is used for both feed forward and backprop operation operation ( hence Deep designation ):

 

JP Morgan is convinced this is the very first real time trading AI/ML application on Wall Street. We are assuming this is not true i.e. there are surely other players operating in this space as RL implementation to order execution is known for quite a while now ( Kearns and Nevmyvaka 2006 ).

The latest LOXM developmentswill be presented at QuantMinds Conference in Lisbon (May of 2018).

Instinet is also using Q-learning, probably for the same purpose ( market impact reduction ).

[转]Deep Reinforcement Learning Based Trading Application at JP Morgan Chase的更多相关文章

  1. 【资料总结】| Deep Reinforcement Learning 深度强化学习

    在机器学习中,我们经常会分类为有监督学习和无监督学习,但是尝尝会忽略一个重要的分支,强化学习.有监督学习和无监督学习非常好去区分,学习的目标,有无标签等都是区分标准.如果说监督学习的目标是预测,那么强 ...

  2. (转) Deep Reinforcement Learning: Playing a Racing Game

    Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playi ...

  3. (转) Deep Reinforcement Learning: Pong from Pixels

    Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from ...

  4. (转) Playing FPS games with deep reinforcement learning

    Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...

  5. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  6. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  7. [DQN] What is Deep Reinforcement Learning

    已经成为DL中专门的一派,高大上的样子 Intro: MIT 6.S191 Lecture 6: Deep Reinforcement Learning Course: CS 294: Deep Re ...

  8. 论文笔记:Learning how to Active Learn: A Deep Reinforcement Learning Approach

    Learning how to Active Learn: A Deep Reinforcement Learning Approach 2018-03-11 12:56:04 1. Introduc ...

  9. 18 Issues in Current Deep Reinforcement Learning from ZhiHu

    深度强化学习的18个关键问题 from: https://zhuanlan.zhihu.com/p/32153603 85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两 ...

随机推荐

  1. LINQ 中常用函数使用: Take TakeWhile Skip SkipWhile Reverse Distinct

    1,Take 方法 Take方法用于从一个序列的开头返回指定数量的元素. string[] names = { "郭靖", "李莫愁", "欧阳晓晓& ...

  2. flask-数据库模型设计2

    3.数据库模型设计 3.1构建蓝图项目目录 1.前后台项目目录分析   2.蓝图构建项目目录 蓝图:一个应用中或跨域应用制作组件和支持通用模式. 蓝图的作用:将不同的功能模块化 构建大型应用 优化项目 ...

  3. Windows与Linux端口占用查询及处理

    Windows下端口占用查询 输入命令:netstat -ano,列出所有端口的情况.在列表中我们观察被占用的端口,比如是49157,首先找到它. 查看被占用端口对应的PID,输入命令:netstat ...

  4. Javascript 将 HTML 页面生成 PDF 并下载

    最近碰到个需求,需要把当前页面生成 pdf,并下载.弄了几天,自己整理整理,记录下来,我觉得应该会有人需要 :) html2canvas 简介 我们可以直接在浏览器端使用html2canvas,对整个 ...

  5. django学习之——创建项目

    创建项目让我迷茫了会: 直接cmd 执行django-admin.py startproject  pro_name 肯定是不行的 必须cd到 D:\Program Files\Python3.3.5 ...

  6. daal4py 随机森林模型训练mnist并保存模型给C++ daal predict使用

    # daal4py Decision Forest Classification Training example Serialization import daal4py as d4p import ...

  7. 小程序BindTap快速连续点击页面跳转多次

    原因: 手机端点击Tap基础事件解决300ms延迟 解决办法: success 里面加一个延迟300ms能解决 setTimeout goRob(e) { const that = this retu ...

  8. linux nat style

      1● nat style 2● link style    

  9. springMVC的工作流程图

  10. 首次编译Java小程序

    public class helloworld { public static void main(string[] args) { system.out.println("hello wo ...