Kylin工作原理、体系架构
核心思想:预计算。
对多维分析可能用到的度量进行预计算,将计算好的结果保存成Cube,并存在HBase中,供查询时直接访问
将高复杂度的聚合运算、多表连接……操作转换成对预计算结果的查询。决定了Kylin拥有很好的快速查询、高并发能力
理论基础:空间换时间
Cuboid:Kylin中将维度任意组合成为一个Cuboid
Cube:Kylin中将所有维度组合成为一个Cube,即包含所有的Cubeid
为了更好地使用Hadoop大数据环境,Kylin从通常用来做数据仓库的HIve中读取源数据,使用Mapreduce作为Cube构建的引擎,并将于计算结果保存在HBase中,对外暴露Restful API/JEBC/ODBC的查询接口。
Kylin支持标准的ANSI SQL,所以可以和常用分析工具(Tableau、Excel)进行无缝对接
restful api:
符合REST架构设计的API。
RESTful架构,就是目前最流行的一种互联网软件架构。它结构清晰、符合标准、易于理解、扩展方便,所以正得到越来越多网站的采用
REST,即Representational State Transfer的缩写
如果一个架构符合REST原则,就称它为RESTful架构
什么是RESTful架构:
(1)每一个URI代表一种资源;
(2)客户端和服务器之间,传递这种资源的某种表现层;
(3)客户端通过四个HTTP动词,对服务器端资源进行操作,实现"表现层状态转化"。
JDBC
(Java DataBase Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用Java语言编写的类和接口组成。
JDBC提供了一种基准,据此可以构建更高级的工具和接口,使数据库开发人员能够编写数据库应用程序
ODBC
开放数据库连接(Open Database Connectivity,ODBC)是微软公司开放服务结构(WOSA,Windows Open Services Architecture)中有关数据库的一个组成部分,它建立了一组规范,并提供了一组对数据库访问的标准API(应用程序编程接口)。
这些API利用SQL来完成其大部分任务。ODBC本身也提供了对SQL语言的支持,用户可以直接将SQL语句送给ODBC。
开放数据库互连(ODBC)是Microsoft提出的数据库访问接口标准。
开放数据库互连定义了访问数据库API的一个规范,这些API独立于不同厂商的DBMS,也独立于具体的编程语言(但是Microsoft的ODBC文档是用C语言描述的,许多实际的ODBC驱动程序也是用C语言写的。)
ODBC规范后来被X/OPEN和ISO/IEC采纳,作为SQL标准的一部分,具体内容可以参考《ISO/IEC 9075-3:1995 (E) Call-Level Interface (SQL/CLI)》等相关的标准文件。
ANSI SQL
“美国国家标准化组织(ANSI)”是一个核准多种行业标准的组织。
SQL作为关系型数据库所使用的标准语言,最初是基于IBM的实现在1986年被批准的。
1987年,“国际标准化组织(ISO)”把ANSI SQL作为国际标准。
体系架构:
Kylin是一个MOLAP(多维在线联机分析处理)系统,将Hive中的数据进行预计算,利用Hadoop的Mapreduce分布式计算框架来实现
Kylin获取的表是星型模型结构的。目前建模时,只支持一张事实表,多张维表。
如果业务需求比较复杂,就要考虑在Hive中进行进一步处理。(比如生成一张大的宽表,或者采用View代替)
HBase:Kylin中用来存储OLAP分析的Cube数据的地方,实现多维数据集的交互式查询
Cube构建
Layer Cubing:按照dimension数量从大到小的顺序,从Base Cuboid开始,依次基于上一层Cubeid的结果进行再聚合。每一层的计算都是一个单独的MapReduce任务
逐层算法,启动N+1轮MapReduce计算:
第一轮,读取原始数据RawData,去掉不相关的列,只保留相关的列。同时对维度列进行压缩编码(此处,计算出ABCD组合,即base cuboid)
此后每一轮MapReduce,输入是上一轮的输出,以重用之前的计算结果,去掉要聚合的维度,算出新的Cuboid,直到最后算出所有的Cubeid
1.5.x开始引入Fast(in-mem) cubing算法,利用Mapper端计算先完成大部分聚合,再将聚合后的结果交给Reducer,从而降低对网络瓶颈的压力。
MapReduce的计算结果最终保存到HBase中,HBase中每行记录的Rowkey由dimention组成,measure会保存再Column family中。为了减少存储代价,会对dimension和measure进行编码。
Kylin的Sql查询
Cube构建完成后,可以查询维度对应的度量值了。
查询时,SQL语句被SQL解析器翻译成一个解析计划,从这个计划可以准确知道用户要查哪些表,怎样join起来,有哪些过滤条件。Kylin用这个计划去匹配找寻到合适的Cube
如果有Cube命中,这个计划会发送到存储引擎,翻译成对存储(默认HBase)相应的Scan操作
group by、过滤条件的列,用来找到Cuboid,过滤条件会被转换成Scan的开始、结束值,以缩小Scan的范围
Scan的result、Rowkey会被反向解码成各个dimension的值,Value会被解码成Metrics值,同时利用HBase列存储的特性,可以保证Kylin有良好的快速响应、高并发
Kylin的特性、生态圈
1.可扩展、超快OLAP引擎
2.Hadoop ANSI SQL 接口
3.交互式查询能力
4.多维立方体MOLAP Cube
5.与BI工具(Tableau)无缝整合
6.其他特性
LDAP:
LDAP是轻量目录访问协议,英文全称是Lightweight Directory Access Protocol,一般都简称为LDAP。
它是基于X.500标准的,但是简单多了并且可以根据需要定制。与X.500不同,LDAP支持TCP/IP,这对访问Internet是必须的。
LDAP的核心规范在RFC中都有定义,所有与LDAP相关的RFC都可以在LDAPman RFC网页中找到。
LDAP目录以树状的层次结构来存储数据。如果你对自顶向下的DNS树或UNIX文件的目录树比较熟悉,也就很容易掌握LDAP目录树这个概念了。就象DNS的主机名那样,
LDAP目录记录的标识名(Distinguished Name,简称DN)是用来读取单个记录,以及回溯到树的顶部。
Kylin生态圈
ETL: Extract-Transform-Load
用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。
ETL一词较常用在数据仓库,但其对象并不限于数据仓库。
Kylin工作原理、体系架构的更多相关文章
- zabbix监控的基础概念、工作原理及架构(一)
zabbix监控的基础概念.工作原理及架构 转载于网络 一.什么是zabbix及优缺点 Zabbix能监视各种网络参数,保证服务器系统的安全运营,并提供灵活的通知机制以让系统管理员快速定位/解决存在的 ...
- zabbix监控的基础概念、工作原理及架构
一.什么是zabbix及优缺点(对比cacti和nagios) Zabbix能监视各种网络参数,保证服务器系统的安全运营:并提供灵活的通知机制以让系统管理员快速定位/解决存在的各种问题.是一个基于WE ...
- 【转】 ISP概述、工作原理及架构
1.概述 ISP全称Image Signal Processing,即图像信号处理.主要用来对前端图像传感器输出信号处理的单元,以匹配不同厂商的图象传感器. ISP 通过一系列数字图像处理算法完成对数 ...
- CSI 工作原理与JuiceFS CSI Driver 的架构设计详解
容器存储接口(Container Storage Interface)简称 CSI,CSI 建立了行业标准接口的规范,借助 CSI 容器编排系统(CO)可以将任意存储系统暴露给自己的容器工作负载.Ju ...
- 《浏览器工作原理与实践》<01>Chrome架构:仅仅打开了1个页面,为什么有4个进程?
无论你是想要设计高性能 Web 应用,还是要优化现有的 Web 应用,你都需要了解浏览器中的网络流程.页面渲染过程,JavaScript 执行流程,以及 Web 安全理论,而这些功能是分散在浏览器的各 ...
- CPU的内部架构和工作原理 (转,相当不错)
http://blog.chinaunix.net/uid-23069658-id-3563960.html 一直以来,总以为CPU内部真是如当年学习<计算机组成原理>时书上所介绍的那样, ...
- CPU的内部架构和工作原理
一直以来,总以为CPU内部真是如当年学习<计算机组成原理>时书上所介绍的那样,是各种逻辑门器件的组合.当看到纳米技术时就想,真的可以把那些器件做的那么小么?直到看了Intel CPU制作流 ...
- Tomcat 系统架构与设计模式,第 1 部分: 工作原理(转载)
简介: 这个分为两个部分的系列文章将研究 Apache Tomcat 的系统架构以及其运用的很多经典设计模式.本文是第 1 部分,将主要从 Tomcat 如何分发请求.如何处理多用户同时请求,还有它的 ...
- Tomcat 系统架构与设计模式,第 1 部分: 工作原理
简介: 这个分为两个部分的系列文章将研究 Apache Tomcat 的系统架构以及其运用的很多经典设计模式.本文是第 1 部分,将主要从 Tomcat 如何分发请求.如何处理多用户同时请求,还有它的 ...
随机推荐
- JS实现input中输入数字,控制每四位加一个空格(银行卡号格式)
前言 今天来讲讲js中实现input中输入数字,控制每四位加一个空格的方法!这个主要是应用于我们在填写表单的时候,填写银行卡信息,要求我们输入的数字是四位一个空格!今天主要介绍两种方式来实现这个方法! ...
- SQL数据库增量备份还原方式
SQLSERVER2008的备份还原最基本的方式自然是完整备份,然后完整还原即可. 但是如果遇到数据库文件很大,数据量很大,备份和还原需要花费不少时间的时候, 数据库的差异备份自然就成为考虑的备份方案 ...
- Oracle12.2中新增的分区功能
Oracle 12.2已经发布一段时间,公网上也可以下载试用.针对12.2,partitioning(分区)也有了不少增强. 自动列表分区 多字段列表分区 只读分区 分区维护时允许过滤 在线转换非分区 ...
- 每日linux命令学习-rpm命令
rpm命令 rpm是一款强大的Redhat软件包管理工具,可创建.安装.查询.验证.升级和卸载每个软件包,软件包是存储文件,包括需要安装的文件和名称.版本.说明等报信息. rpm默认支持7种操作模式, ...
- django 函数装饰器 变为 类装饰器
aaa
- redis3.0 主从
redis3.0 主从 两个实例:6000为主,6001为从. 主实例配置如下: # replication repl-diskless-sync no repl-ping-slave-period ...
- 如何通过 Vue+Webpack 来做通用的前端组件化架构设计
目录: 1. 架构选型 2. 架构目录介绍 3. 架构说明 4. 招聘消息 目前如果要说比较流行的前端架构哪家强,屈指可数:reactjs.angularjs.emberj ...
- log4j2配置推荐
<?xml version="1.0" encoding="UTF-8"?> <!-- monitorInterval为监听配置变化的间隔,3 ...
- 写给大忙人的CentOS 7下最新版(6.2.4)ELK+Filebeat+Log4j日志集成环境搭建完整指南
现在的公司由于绝大部分项目都采用分布式架构,很早就采用ELK了,只不过最近因为额外的工作需要,仔细的研究了分布式系统中,怎么样的日志规范和架构才是合理和能够有效提高问题排查效率的.经过仔细的分析和研究 ...
- Java并发编程73道面试题及答案 —— 面试稳了
今天主要整理一下 Java 并发编程在面试中的常见问题,希望对需要的读者有用. 1.在java中守护线程和本地线程区别? java中的线程分为两种:守护线程(Daemon)和用户线程(User). 任 ...