Hierarchical Object Detection with Deep Reinforcement Learning

NIPS 2016 WorkShop 

  Paper : https://arxiv.org/pdf/1611.03718v1.pdf

  Project Page : https://github.com/imatge-upc/detection-2016-nipsws 

  摘要: 我们提出一种基于深度强化学习的等级物体检测方法 (Hierarchical Object  Detection). 关键点在于: 专注于图像的含有更多信息量的区域, 并且放大该区域. 我们训练一个 intelligent  agent, 给定一个图像窗口, 能够确定将注意力集中于预先设定的五个区域中的哪一个. 这个过程迭代的提供了一个等级的图像分析. 我们对比了两个不同的候选 proposal 策略来引导图像搜索: with and without overlap. 此外, 我们的方法对比了两种不同的策略来提取特征: 第一种是对每一个 region proposal 计算新的 feature map ; 另一种方法是对于整幅图像计算 feature maps 并为后续的每一个 region proposal 提供 crop 的feature map.

  模型   Hierarchical Object Detection Model :

  我们定义了物体检测问题当做是序列决策过程 (the sequential decision process). 每一个时间步骤, agent 应该决定图像的哪个区域应该集中注意力, 以便于少量的步骤内找到物体. 我们将这个问题看作是 Markov Decision Process , 提供了一个框架来建模 decision making.

  MDP formulation :

  作者首先定义了 MDP 的大致过程 : state, actions, reward :

  State :  当前区域 和 记忆向量 构成, 即: the current region and a memory vector. 描述符定义了两个模型: the Image-Zooms model and the Pool45-Crops model . 状态的记忆向量(memory vector)捕获了agent 搜索物体当中,已经选择的过去 4  个 actions. 由于 agent 是学习一个 bounding box 的 refinement procedure, 一个记忆向量编码了这个 refinement procedure 的状态 用来稳定搜索轨迹. 我们将过去的 4 个 actions 编码成一个 one-shot vector. 由于本文定义了 6 个 actions, 所以向量的维度是 24.

  Actions : 跟 ICCV 2015 年的那个检测的方法一样, 这里的action 也是定义成了图像变换的操作 和 停止操作.

  Rewards : 此处的设计 与 ICCV 2015 仍然是一致的.

  

  Model :  

  

  我们讨论了两种提取特征的方法, 上面就是所用的大致网络框架. Image-Zooms model and the Pool45-Crops model.

  对于 Image-Zooms model 来说, 每一个区域都 resize 成 224*224 的大小, 然后抽取 VGG-16 的 Pool 5 layer 的特征.

  对于 Pool45-Crops model, 图像是 full-resolution 传给 VGG-16 的 Pool 5  layer.

  

  像 Faster RCNN 的 ROI Pooling 的方法一样, 本文也是采用这种思路, 只是抽取 ROI 的 feature . 像 SSD 一样, 我们根据 ROI 的尺寸来选择 feature map. 对于较大的物体, 本文的方法就选择较深的 feature map, 而较小的物体, 本文就选择较浅的 feature map .

   

  


论文阅读之: Hierarchical Object Detection with Deep Reinforcement Learning的更多相关文章

  1. 论文阅读:Prominent Object Detection and Recognition: A Saliency-based Pipeline

    论文阅读:Prominent Object Detection and Recognition: A Saliency-based Pipeline  如上图所示,本文旨在解决一个问题:给定一张图像, ...

  2. 论文笔记之:Active Object Localization with Deep Reinforcement Learning

    Active Object Localization with Deep Reinforcement Learning ICCV 2015 最近Deep Reinforcement Learning算 ...

  3. 论文笔记之:Human-level control through deep reinforcement learning

    Human-level control through deep reinforcement learning Nature 2015 Google DeepMind Abstract RL 理论 在 ...

  4. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  5. 论文笔记之:Playing Atari with Deep Reinforcement Learning

    Playing Atari with Deep Reinforcement Learning <Computer Science>, 2013 Abstract: 本文提出了一种深度学习方 ...

  6. 论文阅读 | CenterNet:Object Detection with Keypoint Triplets

    相关链接 论文地址:https://arxiv.org/abs/1904.08189 代码链接:https://github.com/Duankaiwen/CenterNet 概述 CenterNet ...

  7. 论文阅读 | STDN: Scale-Transferrable Object Detection

    论文地址:http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhou_Scale-Transferrable_Object_Detection ...

  8. getting started with building a ROS simulation platform for Deep Reinforcement Learning

    Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Le ...

  9. 目标检测--Scalable Object Detection using Deep Neural Networks(CVPR 2014)

    Scalable Object Detection using Deep Neural Networks 作者: Dumitru Erhan, Christian Szegedy, Alexander ...

随机推荐

  1. 了解一下UTF-16

    1)先啰嗦一下 UTF-16是一种编码格式.啥是编码格式?就是怎么存储,也就是存储的方式. 存储啥?存二进制数字.为啥要存二进制数字? 因为Unicode字符集里面把二进制数字和字符一一对应了,存二进 ...

  2. 写自动更新程序出现"远程服务器返回错误: (404) 未找到"

    在win2003配置后,在客户端运行时能够下载exe和dll文件,但是在更新lib文件时总是报“远程服务器返回错误: (404) 未找到”错误,不明白咋会出现这个问题,去网上一查,发现以下解决办法: ...

  3. python 正则re.search

    re.search 扫描整个字符串并返回第一个成功的匹配. 上码: import re line = "Cats are smarter than dogs"; searchObj ...

  4. MyBatis学习(一)简单入门程序

    MyBatis入门学习 MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google code,并且改名 ...

  5. Linux服务器---邮件服务spam

    安装spam spam(SpamAssassin)利用perl来进行文字分析,他会检测邮件的标题.内容.送信人,这样就可以过滤出垃圾邮件 1.安装spam.由于spam的依赖太多,用户一定要使用yum ...

  6. PHP HTML混写,PHP中把大块HTML文本直接赋值给字符串变量的方法

    PHP HTML混写,PHP中把大块HTML文本直接赋值给字符串变量的方法 使用HEREDOC/NOWDOCHEREDOC和NOWDOC是PHP5.3开始支持的一种新特性,它允许在程序中使用一种自定义 ...

  7. FTP搭建 共享上网 穿透内网外网

    1.ftp原理介绍 FTP只通过TCP连接,没有用于FTP的UDP组件.FTP不同于其他服务的是它使用了两个端口, 一个数据端口和一个命令端口(或称为控制端口).通常21端口是命令端口,20端口是数据 ...

  8. 51Nod 2020 排序相减

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=2020 思路:排序 水水 #include<iostre ...

  9. 75.Java异常处理机制-自定义异常

    package testDate; //自定义异常 public class MyException extends Exception{ public MyException(){ } public ...

  10. 搭建ELK日志分析(亲测无毒!)截图没有附上。。凑合看。搭建出来没有问题

    ( 1 )安装 Logstash 依赖包 JDK Logstash 的运行依赖于 Java 运行环境, Logstash 1.5 以上版本不低于 java 7 推荐使用最新版本的 Java .由于我们 ...