P5241 序列(滚动数组+前缀和优化dp)
挺神仙的一题
看看除了dp好像没什么其他办法了
想着怎么构个具体的图出来,然鹅不太现实。
于是我们想办法用几个参数来表示dp数组
加了几条边肯定要的吧,于是加个参数$i$表示已加了$i$条边
这显然是不够的。于是我们又想:强连通分量.....连通块.......
于是加个$j$表示还有$j$个强连通分量
于是dp数组为$f[i][j]$
这是我们发现一个问题,状态$f[i][j]$不一定是合法的。
那dp不就GG了吗
再次撕烤,我们发现每次加上的边无非就3种情况:
1.把2个强连通分量(或链)连成一条链
2.在某个强连通分量中瞎连(没啥用)
3.在1条链上的某点向回连,形成一个环,缩成一个新强连通分量(可以减少任意个强连通分量)
我们设$k-1$条边(dp数组下标$k$为正数较好处理)投入到第3种情况
要生成剩下$j$个强连通的情况,我们最少投入$n-j$条边用于第1种情况
所以$n-j+(k-1)<=i$
我们又发现,要生成剩下$j$个强连通的情况,我们最多共投入的边数$i$是有限制的
最多情况就是1个块有$n-j+1$个点,剩下$j-1$个块只有1个点,蓝后大块每个点连$n-1$条边,小块互相之间弱连通
那么最大边数为$(n-j+1)*(n-1)+(j-2+j-3+j-4+...+1)=(n-j+1)*(n-1)+(j-1)*(j-2)/2$
所以$i<=(n-j+1)*(n-1)+(j-1)*(j-2)/2$
总结一下,即设$f[i][j][k]$表示到第$i$条边,有$j$个强连通分量,$k-1$条边向回连的方案数
限制条件:
$n-j+(k-1)<=i$
$i<=(n-j+1)*(n-1)+(j-1)*(j-2)/2$
转移:
$f[i][j][k]+=f[i-1][j][k]$(第2种情况)
$f[i][j][k]+=\sum_{h=j+1}^{n}f[i-1][h][k-1]$
显然是可以滚动数组+前缀和优化的辣
然鹅复杂度还是太高,主要因为k很麻烦
仔细观察k,发现
$n-j+(k-1)<=i$
$k<=i+j-n+1$
发现$i>=2n$时k总是合法的
于是我们就可以愉快地缩成2维辣
#include<iostream>
#include<cstdio>
#include<cstring>
#define rint register int
using namespace std;
inline int Min(int a,int b){return a<b?a:b;}
const int mod=1e9+;
inline int Md(int x){return x<mod?x:x-mod;}
#define N 405
int n,f[][N][N],sf[][N][N],g[][N],sg[N][N],lim[N],ans[N*N];
int main(){
scanf("%d",&n); int tn=Min(n*(n-),n<<),w=;
for(rint j=;j<=n;++j) lim[j]=(n-j+)*(n-)+(j-)*(j-)/;
f[][n][]=ans[]=;
for(rint j=;j<=n;++j) sf[][n][]=;
for(rint i=;i<=tn;++i,w^=){
for(rint j=;j<=n;++j)
for(rint k=;k<=n;++k)
f[w][j][k]=;
for(rint j=;j<=n;++j) if(lim[j]>=i)
for(rint k=;k<=n;++k) if(i-(k-)>=n-j)
f[w][j][k]=Md(f[w^][j][k]+sf[w^][j+][k-]);
for(rint j=n;j;--j)
for(rint k=;k<=n;++k){
sf[w][j][k]=Md(sf[w][j+][k]+f[w][j][k]);
ans[i]=Md(ans[i]+f[w][j][k]);
}
}w=;
for(rint j=;j<=n;++j)
for(rint k=;k<=n;++k)
g[][j]=Md(g[][j]+f[][j][k]);
for(rint j=n;j;--j) sg[][j]=Md(sg[][j+]+g[][j]);//降维
for(rint i=tn+;i<=n*(n-);++i,w^=){
for(rint j=;j<=n;++j) g[w][j]=;
for(rint j=;j<=n;++j) if(lim[j]>=i)
g[w][j]=Md(g[w^][j]+sg[w^][j+]);
for(rint j=n;j;--j){
sg[w][j]=Md(sg[w][j+]+g[w][j]);
ans[i]=Md(ans[i]+g[w][j]);
}
}
for(rint i=;i<=n*(n-);++i) printf("%d ",ans[i]);
return ;
}
P5241 序列(滚动数组+前缀和优化dp)的更多相关文章
- Codeforces 712 D. Memory and Scores (DP+滚动数组+前缀和优化)
题目链接:http://codeforces.com/contest/712/problem/D A初始有一个分数a,B初始有一个分数b,有t轮比赛,每次比赛都可以取[-k, k]之间的数,问你最后A ...
- LOJ 6089 小Y的背包计数问题 —— 前缀和优化DP
题目:https://loj.ac/problem/6089 对于 i <= √n ,设 f[i][j] 表示前 i 种,体积为 j 的方案数,那么 f[i][j] = ∑(1 <= k ...
- bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 2312 Solved: 1330[Submit][Stat ...
- HDU-1024 Max Sum Plus Plus 动态规划 滚动数组和转移优化
题目链接:https://cn.vjudge.net/problem/HDU-1024 题意 给n, m和一个序列,找m个不重叠子串,使这几个子串内元素和的和最大. n<=1e6 例:1 3 1 ...
- CF601C Kleofáš and the n-thlon(期望+前缀和优化dp)
传送门 解题思路 要求这个人的排名,我们可以先求出某个人比他排名靠前的概率,然后再乘上\(m-1\)即为答案.求某个人比他排名靠前可以用\(dp\),设\(f[i][j]\)表示前\(i\)场比赛某人 ...
- CDOJ 1307 ABCDE 前缀和优化dp
ABCDE 题目连接: http://acm.uestc.edu.cn/#/problem/show/1307 Description Binary-coded decimal (BCD) is a ...
- bzoj 1044 [HAOI2008]木棍分割——前缀和优化dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1044 前缀和优化. 但开成long long会T.(仔细一看不用开long long) #i ...
- bzoj 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——前缀和优化dp / 排列组合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3398 好简单呀.而且是自己想出来的. dp[ i ]表示最后一个牡牛在 i 的方案数. 当前 ...
- 5.19 省选模拟赛 小B的夏令营 概率 dp 前缀和优化dp
LINK:小B的夏令营 这道题是以前从没见过的优化dp的方法 不过也在情理之中. 注意读题 千万不要像我这个sb一样 考完连题意都不知道是啥. 一个长方形 要求从上到下联通的概率. 容易发现 K天只是 ...
随机推荐
- 多级代理 haproxy 传递X-Forwarded-Proto
有时候后端需要知道客户端是用的http请求还是https请求,所以一般在haproxy加上一个X-Forwarded-Proto头 http-request set-header X-Forwarde ...
- [LeetCode] 系统刷题6_Linked List
1. Dummy Node 2. Basic skills [LeetCode] 206. Reverse Linked List_Easy tag: Linked List 2. Fast slow ...
- Cocos Creator 获得设备分辨率
var b = cc.director.getWinSizeInPixels() var bx = b.width var by = b.height
- Linux之HugePages快速配置
关于Linux系统的HugePages与Oracle数据库优化,可以参考熊爷之前的文章,相关概念介绍的非常清晰: Linux大内存页Oracle数据库优化 本文旨在Linux系统上快速配置HugePa ...
- LeetCode12.整数转罗马数字
给定一个整数,将其转为罗马数字.输入确保在 1 到 3999 的范围内. 示例 1: 输入: 3 输出: "III" 示例 2: 输入: 4 输出: "IV" ...
- hbase shell operate
, start hdfs [hadoop@alamps sbin]$ ./start-all.sh This script is Deprecated. Instead use start-dfs.s ...
- 详解Linux下iptables中的DNAT与SNAT设置(转)
详解Linux下iptables中的DNAT与SNAT设置 这篇文章主要介绍了Linux下iptables中的DNAT与SNAT设置,是Linux网络配置中的基础知识,需要的朋友可以参考下 原文连 ...
- uva 1632 Alibaba
题意: 一个人要从如果干个地方拿货,每个地方的货物是有存在时间的,到了某个时间之后就会消失. 按照位置从左到右给出货物的位置以及生存时间,这个人选择一个最优的位置出发,问拿完货物的最少时间. 思路: ...
- [openjudge-搜索]Lake Counting(翻译及实现)
题目原文 描述 Due to recent rains, water has pooled in various places in Farmer John's field, which is rep ...
- 用 hashcat 破解 WIFI WPA2破解
首先用CDlinux系统进行抓包,CDlinux抓包我就不详细说明 到这里可以查看如何安装CDlinux http://jingyan.baidu.com/article/7f766daf5173a9 ...