题目传送门

  戳此处转移

题目大意

  给定一个长为$n$的序列,问它有多少个长度大于等于2的子序列$b_{1}, b_{2}, \cdots, b_{k}$满足$\prod_{i = 2}^{k}C_{b_{i - 1}}^{b_{i}} \equiv 1 \pmod{2}$。答案模$10^{9} + 7$

  考虑限制条件,即前后两个数$b_{i - 1}, b_{i}$,它们要满足$C_{b_{i - 1}}^{b_{i}} \equiv 1\pmod{2}$。

  这样不好处理,考虑使用Lucas定理,得到$b_{i - 1}$是$b_{i}$的子集的结论。

  然后是个常规动态规划,用$f[i][s]$表示考虑到第$i$位,最后一个数是$s$的方案数。但是这样时间复杂度$O(n^{2})$。

  考虑分块,每个位置将它的子集信息上传。

  然后修改和查询一个枚举前9位,一个枚举后9位就行了。

  一直不知道所有数互不相同的意义。

  然后直到今天,发现可以直接枚举子集,$O(3^{\left \lceil \log_{2}W \right \rceil})$。

Code

 /**
* uoj
* Problem#300
* Accepted
* Time: 400ms
* Memory: 2956k
*/
#include <bits/stdc++.h>
using namespace std;
typedef bool boolean; const int S = << , M = 1e9 + ;
const int maskL = ( << ) - , maskH = maskL << , mask = maskL | maskH; int n;
int *ar;
int f[S][S]; inline void init() {
scanf("%d", &n);
ar = new int[(n + )];
for (int i = ; i <= n; i++)
scanf("%d", ar + i);
} inline int query(int S) {
int rt = , s0 = S & maskL, s1 = (S & maskH) >> , ms1 = s1 ^ maskL;
for (int s = ms1; s; s = (s - ) & ms1)
rt = (rt + f[s | s1][s0]) % M;
return (rt + f[s1][s0]) % M;
} inline void modify(int S, int val) {
int s0 = S & maskL, s1 = (S & maskH) >> ;
for (int s = s0; s; s = (s - ) & s0)
f[s1][s] = (f[s1][s] + val) % M;
f[s1][] = (f[s1][] + val) % M;
} int res = ; inline void solve() {
modify(mask, );
for (int i = , c; i <= n; i++) {
c = query(ar[i]);
res = (res + c) % M;
modify(ar[i], c);
}
res = (res - n + M) % M;
printf("%d", res);
} int main() {
// freopen("gift.in", "r", stdin);
init();
solve();
return ;
}

uoj 300 [CTSC2017]吉夫特 - Lucas - 分块 - 动态规划的更多相关文章

  1. 【BZOJ4903】【UOJ#300】吉夫特(卢卡斯定理,动态规划)

    [BZOJ4903][UOJ#300]吉夫特(卢卡斯定理,动态规划) 题面 UOJ BZOJ:给的UOJ的链接...... 题解 首先模的质数更小了,直接给定了\(2\).当然是卢卡斯定理了啊. 考虑 ...

  2. loj 300 [CTSC2017]吉夫特 【Lucas定理 + 子集dp】

    题目链接 loj300 题解 orz litble 膜完题解后,突然有一个简单的想法: 考虑到\(2\)是质数,考虑Lucas定理: \[{n \choose m} = \prod_{i = 1} { ...

  3. bzoj4903 & loj2264 [Ctsc2017]吉夫特 Lucas 定理+状压DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4903 https://loj.ac/problem/2264 http://uoj.ac/pr ...

  4. BZOJ.4903.[CTSC2017]吉夫特(Lucas DP)

    题目链接 首先\(C(n,m)\)为奇数当且仅当\(n\&m=m\). 简要证明: 因为是\(mod\ 2\),考虑Lucas定理. 在\(mod\ 2\)的情况下\(C(n,m)\)最后只会 ...

  5. [CTSC2017]吉夫特(Lucas定理,DP)

    送70分,预处理组合数是否为偶数即可. 剩下的数据,根据Lucas定理的推论可得当且仅当n&m=n的时候,C(n,m)为奇数.这样就可以直接DP了,对于每个数,考虑它对后面的数的影响即可,直接 ...

  6. 洛谷P3773 [CTSC2017]吉夫特(Lucas定理,dp)

    题意 满足$b_1 < b_2 < \dots < b_k$且$a_{b_1} \geqslant a_{b_2} \geqslant \dots \geqslant a_{b_k} ...

  7. BZOJ4903 UOJ300 CTSC2017 吉夫特 【Lucas定理】

    BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation&q ...

  8. [UOJ300][CTSC2017]吉夫特

    uoj bzoj luogu sol 根据\(Lucas\)定理,\(\binom nm \mod 2=\binom{n\%2}{m\%2}\times\binom{n/2}{m/2}\mod 2\) ...

  9. uoj#300.【CTSC2017】吉夫特

    题面:http://uoj.ac/problem/300 一道大水题,然而我并不知道$lucas$定理的推论.. $\binom{n}{m}$为奇数的充要条件是$n&m=n$.那么我们对于每个 ...

随机推荐

  1. Lua class

    local _class = {} function class(super) local class_type = {} class_type.ctor = false class_type.sup ...

  2. Nginx查看并发链接数

    一.通过界面查看通过web界面查看时Nginx需要开启status模块,也就是安装Nginx时加上 --with-http_stub_status_module 一.通过界面查看 通过web界面查看时 ...

  3. python pillow

    https://www.cnblogs.com/morethink/p/8419151.html#%E7%9B%B4%E6%8E%A5%E6%8F%92%E5%85%A5%E6%8E%92%E5%BA ...

  4. <6>Lua元表和冒号 self

    Lua中没有像C.C++.JAVA中的类概念,面向对象等 ,但我们可以模拟出来 1. Lua中有个很重要的概念元表 设置元表setmetatable()函数  获取元表getmetatable()函数 ...

  5. innerText 与 innerHtml的区别

    j基本语法类似: innerHTML/innerText ->给除了表单元素的标签赋值内容 document.getElementById("div1").innerHTML ...

  6. mysql主从配置,读写分离

    Mysql主从配置,实现读写分离 大型网站为了软解大量的并发访问,除了在网站实现分布式负载均衡,远远不够.到了数据业务层.数据访问层,如果还是传统的数据结构,或者只是单单靠一台服务器扛,如此多的数据库 ...

  7. sitecore系统教程之部署架构方式分析

    当您第一次部署Sitecore体验平台时,您可以选择三种主要体系结构选项: 内部部署服务器解决方案 混合服务器方案 云服务器解决方案 您是选择将Sitecore作为云,内部部署还是混合解决方案运行,取 ...

  8. MVC请求管道

    下面是请求管道中的19个事件. (1)BeginRequest: 开始处理请求 (2)AuthenticateRequest授权验证请求,获取用户授权信息 (3):PostAuthenticateRe ...

  9. Spark学习之路 (七)Spark 运行流程

    一.Spark中的基本概念 (1)Application:表示你的应用程序 (2)Driver:表示main()函数,创建SparkContext.由SparkContext负责与ClusterMan ...

  10. python 创建二维数组的方法

    废话不多说,直接上代码: #coding=utf-8 def two_di_demo1(): a=[] for i in range(10): a.append([]) for j in range( ...