tensorflow intel platform 优化
TensorFlow *是深度学习领域中主要使用的机器学习框架,要求高效利用计算资源。 为了充分利用英特尔架构和提高性能,TensorFlow *库已经使用英特尔MKL-DNN原语进行了优化,该原语是深度学习应用的流行性能库。
有三种安装方式。
1. 使用pip
pip install -i https://pypi.anaconda.org/intel/simple tensorflow
2. anaconda 安装
3. 自己编译
前两种方式可能不支持最新的指令集。
安装 Bazel
pushd /var/tmp URL=https://github.com/bazelbuild/bazel/releases/latest
LASTURL=$(curl $URL -s -L -I -o /dev/null -w '%{url_effective}')
BZ_VERSION=${LASTURL##*/}
wget https://github.com/bazelbuild/bazel/releases/download/$BZ_VERSION/bazel-$BZ_VERSION-installer-linux-x86_64.sh chmod +x bazel-*
./bazel-*
export PATH=/usr/local/bin:$PATH popd
centos 7.4 can not install `dnf`from epel
WARNING: EPEL 7 DNF is very old and has issues to include security flaws. This appears to be the reason it was removed. That said here is the work around to get it working on Centos 7.
cat > /etc/yum.repos.d/dnf-stack-el7.repo << EOF
[dnf-stack-el7]
name=Copr repo for dnf-stack-el7 owned by @rpm-software-management
baseurl=https://copr-be.cloud.fedoraproject.org/results/@rpm-software-management/dnf-stack-el7/epel-7-\$basearch/
skip_if_unavailable=True
gpgcheck=
gpgkey=https://copr-be.cloud.fedoraproject.org/results/@rpm-software-management/dnf-stack-el7/pubkey.gpg
enabled=
enabled_metadata=
EOF yum install dnf
centos 7会出现这个bug:
dnf copr plugin not present in dnf-plugins-core
因为EPEL 7 DNF 已经被移除了centos 7 install dn,还需要:
wget http://springdale.math.ias.edu/data/puias/unsupported/7/x86_64/dnf-plugins-core-0.1.5-3.sdl7.noarch.rpm
dnf install copr-cli
sudo dnf update
dnf copr enable vbatts/bazel
centos 可以直接安装bazel下:
wget https://copr.fedorainfracloud.org/coprs/vbatts/bazel/repo/epel-7/vbatts-bazel-epel-7.repo -P /etc/yum.repos.d/
yum install dnf-plugins-core-0.1.-.sdl7.noarch.rpm
yum install bazel
git clone https://github.com/tensorflow/tensorflow tensorflow
cd tensorflow
Compiling TensorFlow with Intel C Compiler
CC=icc bazel build --verbose_failures --config=mkl --copt=-msse4.2 --copt="-DEIGEN_USE_VML" -c opt //tensorflow/tools/pip_package:build_pip_package
bazel build --config=mkl -c opt --copt=-mavx --copt=-mavx2 --copt=-mfma --copt=-mavx512f --copt=-mavx512dq --copt=-mavx512cd --copt=-mavx512bw --copt=-mavx512vl --copt="-DEIGEN_USE_VML" //tensorflow/tools/pip_package:build_pip_package
Build and Install TensorFlow* on Intel® Architecture
build tensorflow container:
more @ github
ref build-dev-container.sh @github tensorflow docker
# source tf-docker.evn
# cat tf-docker.evn
# The script set the following environment variables for tf docker:
export TF_DOCKER_BUILD_TYPE=mkl
# export TF_DOCKER_BUILD_TYPE=CPU
# CPU or GPU image export TF_DOCKER_BUILD_IS_DEVEL=YES
# Is this developer image export TF_DOCKER_BUILD_DEVEL_BRANCH=r1.
# export TF_DOCKER_BUILD_DEVEL_BRANCH=master
# (Required if TF_DOCKER_BUILD_IS_DEVEL is YES)
# Specifies the branch to checkout for devel docker images # export TF_DOCKER_BUILD_CENTRAL_PIP
# (Optional)
# If set to a non-empty string, will use it as the URL from which the
# pip wheel file will be downloaded (instead of building the pip locally). # export TF_DOCKER_BUILD_CENTRAL_PIP_IS_LOCAL
# (Optional)
# If set to a non-empty string, we will treat TF_DOCKER_BUILD_CENTRAL_PIP
# as a path rather than a url. export TF_DOCKER_BUILD_IMAGE_NAME=native-mkl-tf
# (Optional)
# If set to any non-empty value, will use it as the image of the
# newly-built image. If not set, the tag prefix tensorflow/tensorflow
# will be used. # export TF_DOCKER_BUILD_VERSION:
# (Optinal)
# If set to any non-empty value, will use the version (e.g., 0.8.) as the
# tag prefix of the image. Additional strings, e.g., "-devel-gpu", will be
# appended to the tag. If not set, the default tag prefix "latest" will be
# used. # export TF_DOCKER_BUILD_PORT
# (Optional)
# If set to any non-empty and valid port number, will use that port number
# during basic checks on the newly-built docker image. # export TF_DOCKER_BUILD_PUSH_CMD
# (Optional)
# If set to a valid binary/script path, will call the script with the final
# tagged image name with an argument, to push the image to a central repo
# such as gcr.io or Docker Hub. # export TF_DOCKER_BUILD_PUSH_WITH_CREDENTIALS
# (Optional)
# Do not set this along with TF_DOCKER_BUILD_PUSH_CMD. We will push with the
# direct commands as opposed to a script. # export TF_DOCKER_USERNAME
# (Optional)
# Dockerhub username for pushing a package. # export TF_DOCKER_EMAIL
# (Optional)
# Dockerhub email for pushing a package. # export TF_DOCKER_PASSWORD
# (Optional)
# Dockerhub password for pushing a package. # export TF_DOCKER_BUILD_PYTHON_VERSION
# (Optional)
# Specifies the desired Python version. Defaults to PYTHON2. # export TF_DOCKER_BUILD_OPTIONS
# (Optional)
# Specifies the desired build options. Defaults to OPT.
参考:
install 中文版
pip install mock
conda install for TensorFlow and Intel Distribution for Python upgrade from 2017 to 2018
Intel® Computer Vision(CV) SDK
Intel's Deep Learning Inference Engine Developer Guide
inference-engine-devguide-introduction
Configuring Model Optimizer for TensorFlow* Prerequisites
Converting Your TensorFlow* Model
Configuring Model Optimizer for TensorFlow* Prerequisites
应用相关的论文
Pedestrian Detection Using TensorFlow* on Intel® Architecture
构建安装TensorFlow* Serving on Intel® Architecture
Train and Use a TensorFlow* Model on Intel® Architecture
Using the Model Optimizer to Convert TensorFlow* Models
tensorflow intel platform 优化的更多相关文章
- TensorFlow实现与优化深度神经网络
TensorFlow实现与优化深度神经网络 转载请注明作者:梦里风林Github工程地址:https://github.com/ahangchen/GDLnotes欢迎star,有问题可以到Issue ...
- 好用的函数,assert,random.sample,seaborn tsplot, tensorflow.python.platform flags 等,持续更新
python 中好用的函数,random.sample等,持续更新 random.sample random.sample的函数原型为:random.sample(sequence, k),从指定序列 ...
- 编译TensorFlow CPU指令集优化版
编译TensorFlow CPU指令集优化版 如题,CPU指令集优化版,说的是针对某种特定的CPU型号进行过优化的版本.通常官方给的版本是没有针对特定CPU进行过优化的,有网友称,优化过的版本相比优化 ...
- TensorFlow 学习(十五)—— tensorflow.python.platform
tensorflow.python.platform 下的常用工具类和工具函数:tensorflow/tensorflow/python/platform at master · tensorflow ...
- 2019-09-16 16:42:03.621946: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA Traceback (most recent cal
-- ::] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA ...
- W tensorflow/core/platform/cpu_feature_guard.cc:45]
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use SSE3 ...
- TensorFlow 深度学习笔记 TensorFlow实现与优化深度神经网络
转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 全 ...
- Tensorflow 中的优化器解析
Tensorflow:1.6.0 优化器(reference:https://blog.csdn.net/weixin_40170902/article/details/80092628) I: t ...
- 『TensorFlow』梯度优化相关
tf.trainable_variables可以得到整个模型中所有trainable=True的Variable,也是自由处理梯度的基础 基础梯度操作方法: tf.gradients 用来计算导数.该 ...
随机推荐
- unicode gbk utf-8的差异
GB2312(1980年)定义,包含6763个汉字,682个字符 GBK1.0 定义了21003个汉字,21886个字符 ASCII->GB2312->GBK 编码方式向后兼容,即同一个字 ...
- Linux配置eclipse实践
有几年没有在Linux下用eclipse开发了,几年前是在CentOS 7下用eclipse开发的,好像用的还是较新的版本.最近有个项目要求在centos 下卡发,装上eclipse-cdt后,建立项 ...
- gcc dynamic load library
Linux下一般都是直接在编译生成时挂接上链接库,运行时,把链接库放到系统环境里就可以了 但是windows出现带来了动态链接的概念,也就兴起了非windows世界的插件的概念的范潮 对应于windo ...
- Python中self和__init__的含义与使用
原文地址https://blog.csdn.net/love666666shen/article/details/78189984 Python中的self 在Python中的类Class的代码中,常 ...
- 发布网站配置文件和SSL
1.将cert下新建一个文件将所有证书文件放在新建的文件下 例如:cert/medcard 2.配置网站的.conf文件 <VirtualHost *:443> ServerName ww ...
- DBA角色职责
MySQL DBA分架构DBA,运维DBA和开发DBA三种角色,职责介绍如下: MySQL数据库系统日常管理职责 日常管理的主要职责是对MySQL服务器程序mysqld的运行情况进行管理,使数据库用户 ...
- 永恒之蓝msf下 ms17_010 (64位kali下安装wine32)
本次用到的环境: kali(2016.2)32位系统.ip地址:192.168.1.104 目标靶机为:win7sp1x64系统(关闭防火墙),ip地址:192.168.1.105 ========= ...
- 3.GDScript(1)概览
GDScript 是上面提到的用于Godot的主要语言.和其他语言相比,它与Godot高度整合,有许多优点: 简单,优雅,设计上为Lua.Python.Squirrel等语言用户所熟悉. 加载和编译速 ...
- 准备mybatis-spring
spring-mybatis下载:https://mvnrepository.com/artifact/org.mybatis/mybatis-spring 导入mybatis-spring-2.0. ...
- Robotframework 3- 安装
1. 安装, python3 安装好后,在cmd中运行 pip install robotframework # Install the latest version (does not upgrad ...