【题解】Luogu P4363 [九省联考2018]一双木棋chess
原题传送门
这道题珂以轮廓线dp解决
经过推导,我们珂以发现下一行的棋子比上一行的棋子少(或等于),而且每一行中的棋子都是从左向右依次排列(从头开始,中间没有空隙)
所以每下完一步棋,棋盘的一部分是有棋子的,另一部分是没棋子的
那么,我们就珂以用一条轮廓线来表示有棋子的部分和没棋子的部分的分界线
我们珂以用一个二进制数表示轮廓线,长\(n+m\)位,含有\(n\)个\(1\)和\(m\)个\(0\),轮廓线从右上走到左下,二进制中一位\(1\)表示向下\(1\)格,\(0\)表示向左\(1\)格
再经过推导,珂以发现每多下一步棋,轮廓线中的一个\(1\)就会向前移一位
有了这些我们就珂以开始设计方程,进行记忆化搜索
我们设\(L\)为一条轮廓线,用\(f[L]\)表示这个轮廓线距离游戏结束菲菲还能比牛牛多多少分
所以边界条件就是\(f[((1<<n)-1)<<m]\),最终答案便是\(f[(1<<n)-1]\)
转移答案时,顺着轮廓线寻找珂以落子的位置,然后根据是谁下的比\(Min\)或\(Max\)就行了
时间复杂度应该是\(O(\frac{(n+m)!}{n!m!})\)
完整代码(代码下方有一些对代码中位运算的解释)
#include <bits/stdc++.h>
#define N 10
#define inf (1<<30)
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
register int x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register int x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
inline int Max(register int x,register int y)
{
return x>y?x:y;
}
inline int Min(register int x,register int y)
{
return x<y?x:y;
}
int n,m;
int a[N][N],b[N][N];
int f[1<<(N<<1)];
bool vis[1<<(N<<1)];
inline int dfs(register int now,register int who)
{
if(vis[now])
return f[now];
f[now]=who?-inf:inf;
int x=n,y=0;
for(register int i=0;i<n+m-1;++i)
{
if(now>>i&1)
--x;
else
++y;
if((now>>i&3)!=1)
continue;
int nxt=now^(3<<i);
if(who)
f[now]=Max(f[now],dfs(nxt,who^1)+a[x][y]);
else
f[now]=Min(f[now],dfs(nxt,who^1)-b[x][y]);
}
vis[now]=true;
return f[now];
}
int main()
{
n=read(),m=read();
for(register int i=0;i<n;++i)
for(register int j=0;j<m;++j)
a[i][j]=read();
for(register int i=0;i<n;++i)
for(register int j=0;j<m;++j)
b[i][j]=read();
vis[((1<<n)-1)<<m]=true;
write(dfs((1<<n)-1,1));
return 0;
}
关于位运算的解释
1.
if(now>>i&1)
--x;
else
++y;
这实际就是扫描轮廓线的过程,先左移\(i\)位,使得倒数第\(i+1\)位在最后,再与\(1\)“&”一下就珂以判断倒数第\(i+1\)为是\(0\)还是\(1\),从而判断该状态的子状态的位置
2.
if((now>>i&3)!=1)
continue;
3的二进制是\(11\),因为只有当状态连续的两位是\(01\)(前一位是\(0\),后一位是\(1\))才能转移,这句话就是判断了这个格子是否能下棋子
3.
int nxt=now^(3<<i);
这句能确定转移后轮廓线的形状,原来的两位是\(01\),异或上\(11\)就成了\(10\)
·- -> |
| -·
【题解】Luogu P4363 [九省联考2018]一双木棋chess的更多相关文章
- luogu P4363 [九省联考2018]一双木棋chess
传送门 对抗搜索都不会,我真是菜死了qwq 首先根据题目条件,可以发现从上到下每一行的棋子数是单调不增的,然后n m都比较小,如果把状态搜出来,可以发现合法状态并不多,所以可以用一个11进制数表示状态 ...
- 洛谷 P4363 [九省联考2018]一双木棋chess 解题报告
P4363 [九省联考2018]一双木棋chess 题目描述 菲菲和牛牛在一块\(n\)行\(m\)列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落 ...
- 洛谷 P4363 [九省联考2018]一双木棋chess 题解
题目链接:https://www.luogu.org/problemnew/show/P4363 分析: 首先博弈,然后考虑棋盘的规则,因为一个子在落下时它的上面和左面都已经没有空位了,所以棋子的右下 ...
- 洛谷P4363 [九省联考2018]一双木棋chess 【状压dp】
题目 菲菲和牛牛在一块n 行m 列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落子,直到填满棋盘时结束. 落子的规则是:一个格子可以落子当且仅当这个 ...
- P4363 [九省联考2018]一双木棋chess
思路 容易发现只能在轮廓线的拐点处落子,所以棋盘的状态可以用一个n+m长度的二进制数表示 转移就是10变成01 代码 #include <cstdio> #include <algo ...
- Luogu 4363 [九省联考2018]一双木棋chess
发现数据范围很小,想到状压dp,然后就愣住不会了. 表示太菜了并没有接触过轮廓线dp这种操作. 首先发现合法的操作过程中一定是这样子的: 按照行来看发现每一行单调不递增. 我们用$1$来表示竖着的轮廓 ...
- P4363 [九省联考2018]一双木棋chess(对抗搜索+记忆化搜索)
传送门 这对抗搜索是个啥玩意儿…… 首先可以发现每一行的棋子数都不小于下一行,且局面可由每一行的棋子数唯一表示,那么用一个m+1进制数来表示当前局面,用longlong存,开map记忆化搜索 然后时间 ...
- P4363 [九省联考2018]一双木棋
题面 这种搜索要把后继状态都跑出来之后取Min/Max 也就是回溯的时候进行操作 记得用hash进行记忆化(用map不开O2会TLE) #include<iostream> #includ ...
- [九省联考2018]一双木棋chess——搜索+哈希
题目:bzoj5248 https://www.lydsy.com/JudgeOnline/problem.php?id=5248 洛谷P4363 https://www.luogu.org/prob ...
随机推荐
- [LeetCode] 849. Maximize Distance to Closest Person_Easy tag: BFS
In a row of seats, 1 represents a person sitting in that seat, and 0 represents that the seat is emp ...
- Xgboost调参总结
一.参数速查 参数分为三类: 通用参数:宏观函数控制. Booster参数:控制每一步的booster(tree/regression). 学习目标参数:控制训练目标的表现. 二.回归 from xg ...
- js中两个!!的理解
在js中经常有两个!!出现,经常让人难以理解 (function () { var a = 10; var b = 20; function add(num1, num2) { var num1 = ...
- ROSETTA使用技巧随笔--Full Atom Representation和Centroid Representation
Full Atom Representation vs Centroid Representation Full Atom Representation即全原子标识,氨基酸残基的所有相关原子,均原封不 ...
- HDU 4686 Arc of Dream(矩阵)
Arc of Dream [题目链接]Arc of Dream [题目类型]矩阵 &题解: 这题你做的复杂与否很大取决于你建的矩阵是什么样的,膜一发kuangbin大神的矩阵: 还有几个坑点: ...
- vue搭建环境并创建项目
1.>npm install @vue/cli -g 2.创建项目A a.>vue ui b.在弹出的管理界面创建项目 或 a.npm install -g @vue/cli-init b ...
- netCore webapi Uow实现方式
参照 http://www.cnblogs.com/GreedyL/p/7474368.html 思路: 1.创建ActionFilter拦截请求,在拦截器中注入IUOW,IUOW里面注入IDbCon ...
- url中是否加斜杠/
通常来说,不加斜杠的形式(如”example.jsp”)请求的是相对于当前页面路径的资源 http://localhost:8080/webapp/examole:加斜杠的形式(”/example.j ...
- Marlin 溫度感應器 數值轉換對應表
Marlin 溫度感應器 數值轉換對應表 (2014/03/27)Update: 自己實測了這個自動產生的對應表,結果測得的溫度與實際值仍有相當大的誤差.看來還是要回頭用測量的方式來校正溫度... ...
- Rigid Frameworks (画图二分图规律 + DP + 数学组合容斥)
题意:方格n*m,然后对于每一个格子有3种画法1左对角线2右对角线3不画,求让图形稳定的画法有多少种? 思路:通过手画二分图可以发现当二分图联通时改图满足条件,然后我们对于一个dp[n][m]可以利用 ...