原题传送门

这道题珂以轮廓线dp解决

经过推导,我们珂以发现下一行的棋子比上一行的棋子少(或等于),而且每一行中的棋子都是从左向右依次排列(从头开始,中间没有空隙)

所以每下完一步棋,棋盘的一部分是有棋子的,另一部分是没棋子的

那么,我们就珂以用一条轮廓线来表示有棋子的部分和没棋子的部分的分界线

我们珂以用一个二进制数表示轮廓线,长\(n+m\)位,含有\(n\)个\(1\)和\(m\)个\(0\),轮廓线从右上走到左下,二进制中一位\(1\)表示向下\(1\)格,\(0\)表示向左\(1\)格

再经过推导,珂以发现每多下一步棋,轮廓线中的一个\(1\)就会向前移一位

有了这些我们就珂以开始设计方程,进行记忆化搜索

我们设\(L\)为一条轮廓线,用\(f[L]\)表示这个轮廓线距离游戏结束菲菲还能比牛牛多多少分

所以边界条件就是\(f[((1<<n)-1)<<m]\),最终答案便是\(f[(1<<n)-1]\)

转移答案时,顺着轮廓线寻找珂以落子的位置,然后根据是谁下的比\(Min\)或\(Max\)就行了

时间复杂度应该是\(O(\frac{(n+m)!}{n!m!})\)

完整代码(代码下方有一些对代码中位运算的解释)

  1. #include <bits/stdc++.h>
  2. #define N 10
  3. #define inf (1<<30)
  4. #define getchar nc
  5. using namespace std;
  6. inline char nc(){
  7. static char buf[100000],*p1=buf,*p2=buf;
  8. return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
  9. }
  10. inline int read()
  11. {
  12. register int x=0,f=1;register char ch=getchar();
  13. while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
  14. while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
  15. return x*f;
  16. }
  17. inline void write(register int x)
  18. {
  19. if(!x)putchar('0');if(x<0)x=-x,putchar('-');
  20. static int sta[20];register int tot=0;
  21. while(x)sta[tot++]=x%10,x/=10;
  22. while(tot)putchar(sta[--tot]+48);
  23. }
  24. inline int Max(register int x,register int y)
  25. {
  26. return x>y?x:y;
  27. }
  28. inline int Min(register int x,register int y)
  29. {
  30. return x<y?x:y;
  31. }
  32. int n,m;
  33. int a[N][N],b[N][N];
  34. int f[1<<(N<<1)];
  35. bool vis[1<<(N<<1)];
  36. inline int dfs(register int now,register int who)
  37. {
  38. if(vis[now])
  39. return f[now];
  40. f[now]=who?-inf:inf;
  41. int x=n,y=0;
  42. for(register int i=0;i<n+m-1;++i)
  43. {
  44. if(now>>i&1)
  45. --x;
  46. else
  47. ++y;
  48. if((now>>i&3)!=1)
  49. continue;
  50. int nxt=now^(3<<i);
  51. if(who)
  52. f[now]=Max(f[now],dfs(nxt,who^1)+a[x][y]);
  53. else
  54. f[now]=Min(f[now],dfs(nxt,who^1)-b[x][y]);
  55. }
  56. vis[now]=true;
  57. return f[now];
  58. }
  59. int main()
  60. {
  61. n=read(),m=read();
  62. for(register int i=0;i<n;++i)
  63. for(register int j=0;j<m;++j)
  64. a[i][j]=read();
  65. for(register int i=0;i<n;++i)
  66. for(register int j=0;j<m;++j)
  67. b[i][j]=read();
  68. vis[((1<<n)-1)<<m]=true;
  69. write(dfs((1<<n)-1,1));
  70. return 0;
  71. }

关于位运算的解释

1.

  1. if(now>>i&1)
  2. --x;
  3. else
  4. ++y;

这实际就是扫描轮廓线的过程,先左移\(i\)位,使得倒数第\(i+1\)位在最后,再与\(1\)“&”一下就珂以判断倒数第\(i+1\)为是\(0\)还是\(1\),从而判断该状态的子状态的位置

2.

  1. if((now>>i&3)!=1)
  2. continue;

3的二进制是\(11\),因为只有当状态连续的两位是\(01\)(前一位是\(0\),后一位是\(1\))才能转移,这句话就是判断了这个格子是否能下棋子

3.

  1. int nxt=now^(3<<i);

这句能确定转移后轮廓线的形状,原来的两位是\(01\),异或上\(11\)就成了\(10\)

  1. ·- -> |
  2. |

【题解】Luogu P4363 [九省联考2018]一双木棋chess的更多相关文章

  1. luogu P4363 [九省联考2018]一双木棋chess

    传送门 对抗搜索都不会,我真是菜死了qwq 首先根据题目条件,可以发现从上到下每一行的棋子数是单调不增的,然后n m都比较小,如果把状态搜出来,可以发现合法状态并不多,所以可以用一个11进制数表示状态 ...

  2. 洛谷 P4363 [九省联考2018]一双木棋chess 解题报告

    P4363 [九省联考2018]一双木棋chess 题目描述 菲菲和牛牛在一块\(n\)行\(m\)列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落 ...

  3. 洛谷 P4363 [九省联考2018]一双木棋chess 题解

    题目链接:https://www.luogu.org/problemnew/show/P4363 分析: 首先博弈,然后考虑棋盘的规则,因为一个子在落下时它的上面和左面都已经没有空位了,所以棋子的右下 ...

  4. 洛谷P4363 [九省联考2018]一双木棋chess 【状压dp】

    题目 菲菲和牛牛在一块n 行m 列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落子,直到填满棋盘时结束. 落子的规则是:一个格子可以落子当且仅当这个 ...

  5. P4363 [九省联考2018]一双木棋chess

    思路 容易发现只能在轮廓线的拐点处落子,所以棋盘的状态可以用一个n+m长度的二进制数表示 转移就是10变成01 代码 #include <cstdio> #include <algo ...

  6. Luogu 4363 [九省联考2018]一双木棋chess

    发现数据范围很小,想到状压dp,然后就愣住不会了. 表示太菜了并没有接触过轮廓线dp这种操作. 首先发现合法的操作过程中一定是这样子的: 按照行来看发现每一行单调不递增. 我们用$1$来表示竖着的轮廓 ...

  7. P4363 [九省联考2018]一双木棋chess(对抗搜索+记忆化搜索)

    传送门 这对抗搜索是个啥玩意儿…… 首先可以发现每一行的棋子数都不小于下一行,且局面可由每一行的棋子数唯一表示,那么用一个m+1进制数来表示当前局面,用longlong存,开map记忆化搜索 然后时间 ...

  8. P4363 [九省联考2018]一双木棋

    题面 这种搜索要把后继状态都跑出来之后取Min/Max 也就是回溯的时候进行操作 记得用hash进行记忆化(用map不开O2会TLE) #include<iostream> #includ ...

  9. [九省联考2018]一双木棋chess——搜索+哈希

    题目:bzoj5248 https://www.lydsy.com/JudgeOnline/problem.php?id=5248 洛谷P4363 https://www.luogu.org/prob ...

随机推荐

  1. 一个简单的MapReduce示例(多个MapReduce任务处理)

    一.需求 有一个列表,只有两列:id.pro,记录了id与pro的对应关系,但是在同一个id下,pro有可能是重复的. 现在需要写一个程序,统计一下每个id下有多少个不重复的pro. 为了写一个完整的 ...

  2. TensorFlow读取CSV数据

    代码来源于官方文档,做了一些小小的调整: # -*- coding:utf-8 -*- import tensorflow as tf filename_queue = tf.train.string ...

  3. SEO--网站流量提升

    话术设置,提炼优质的话术 关键词的挖掘 1.头脑风暴 (开晨会,一堆人坐在一起聊.) 2.利用搜索引擎相关搜索(将关键词设置为搜索热词,利用工具:百度指数,查看关键词) 3.工具 4.长尾关键词(词比 ...

  4. android 流程跟踪

    #记录一下 Thread cur_thread = Thread.currentThread(); StackTraceElement stack[] = cur_thread.getStackTra ...

  5. Response.Redirect & window.location.href

    对接中信的微信H5支付时,对方(其实是微信)需要对我们的域名进行授权,即,我方需向渠道报备支付域名,微信只认可由此域名发起的支付交易. 支付中心只提供了一套支付接口供下游系统访问.因为给渠道报备的域名 ...

  6. 不用ajax实现异步请求:XmlHttpRequest 小记

    视图页面代码 控制器代码

  7. laravel orm

    ###多对多关系 多对多关系和之前的关系完全不一样,因为多对多关系可能出现很多冗余数据,用之前自带的表存不下了. 我们定义两个模型:Article 和 Tag,分别表示文章和标签,他们是多对多的关系. ...

  8. vs远程调试 转http://www.cnblogs.com/magicchaiy/archive/2013/05/28/3088274.html

    远程调试应用场景 部署环境:ASP.NET(C#)+IIS+Win7 64 bit 很多公司的开发模式都是将开发机器和服务器分开,也就是开发一台机,服务器一台机.而测试人员会在服务器上录入测试数据,此 ...

  9. NSOperation、NSOperationQueue(II)

    NSOperationQueue 控制串行执行.并发执行 NSOperationQueue 创建的自定义队列同时具有串行.并发功能 这里有个关键属性 maxConcurrentOperationCou ...

  10. 1.python虚拟环境的安装-用以同时使用py2,py3

    第一步:安装环境支持[linux下在前加sudo] http://www.lfd.uci.edu/~gohlke/pythonlibs/#pycurl pip install virtualenv 第 ...