SPOJ.Visible Lattice Points(莫比乌斯反演)
/*
http://www.spoj.com/problems/VLATTICE/
题意:求一个n*n*n的晶体,有多少点可以在(0,0,0)处可以直接看到。
同BZOJ.2301
题目即要求gcd(i,j,k)=1的(i,j,k)数对个数,1<=i,j,k<=n
由于是立体,所以最后再算上平面的点和坐标轴上的三个点就行了
*/
#include<cstdio>
#include<cctype>
#define gc() getchar()
typedef long long LL;
const int N=1e6+3;
int P[N+3],cnt,mu[N+3],sum[N+3];
bool Not_P[N+3];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
void Init()
{
mu[1]=1;
for(int i=2;i<N;++i)
{
if(!Not_P[i]) P[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&i*P[j]<N;++j)
{
Not_P[i*P[j]]=1;
if(!(i%P[j])) {mu[i*P[j]]=0; break;}
mu[i*P[j]]=-mu[i];
}
}
for(int i=1;i<N;++i) sum[i]=sum[i-1]+mu[i];
}
int main()
{
Init();
int t=read(),n;
while(t--)
{
n=read();
LL ans=3;//坐标轴上的三个点
for(int nxt,i=1;i<=n;i=nxt+1)
nxt=n/(n/i), ans+=1LL*(sum[nxt]-sum[i-1])*(n/i)*(n/i)*(n/i+3);//立体空间内的和三个平面的
printf("%lld\n",ans);
}
return 0;
}
SPOJ.Visible Lattice Points(莫比乌斯反演)的更多相关文章
- SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)
Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...
- spoj 7001 Visible Lattice Points莫比乌斯反演
Visible Lattice Points Time Limit:7000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Su ...
- spoj7001 Visible Lattice Points 莫比乌斯反演+三维空间互质对数
/** 题目:Visible Lattice Points 链接:https://vjudge.net/contest/178455#problem/A 题意:一个n*n*n大小的三维空间.一侧为(0 ...
- SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演 难度:3
http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x ...
- SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演
这样的点分成三类 1 不含0,要求三个数的最大公约数为1 2 含一个0,两个非零数互质 3 含两个0,这样的数只有三个,可以讨论 针对 1情况 定义f[n]为所有满足三个数最大公约数为n的三元组数量 ...
- SPOJ 7001 Visible Lattice Points (莫比乌斯反演)
题意:求一个正方体里面,有多少个顶点可以在(0,0,0)位置直接看到,而不被其它点阻挡.也就是说有多少个(x,y,z)组合,满足gcd(x,y,z)==1或有一个0,另外的两个未知数gcd为1 定义f ...
- Spoj 7001 Visible Lattice Points 莫比乌斯,分块
题目:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37193 Visible Lattice Points Time L ...
- spoj 7001. Visible Lattice Points GCD问题 莫比乌斯反演
SPOJ Problem Set (classical) 7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N la ...
- SPOJ 7001. Visible Lattice Points (莫比乌斯反演)
7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...
随机推荐
- 【转】Windows下安装python2和python3双版本
[转]Windows下安装python2和python3双版本 现在大家常用的桌面操作系统有:Windows.Mac OS.ubuntu,其中Mac OS 和 ubuntu上都会自带python.这里 ...
- Linux内存管理4---虚拟地址空间管理
1.前言 本文所述关于内存管理的系列文章主要是对陈莉君老师所讲述的内存管理知识讲座的整理. 本讲座主要分三个主题展开对内存管理进行讲解:内存管理的硬件基础.虚拟地址空间的管理.物理地址空间的管理. 本 ...
- Hacker需要掌握的基础
编译语言:1.C语言能力要求:精通选用教材:<C Primer Plus 中文版(第5版)>其他教材:<标准C程序设计(第3版)><C语言入门经典(原书第3版)>补 ...
- 【译】.NET Core 2.2 Preview 2 发布
原文出自.Net Blog Announcing .NET Core 2.2 Preview 2 今天,我们宣布推出.NET Core 2.2 Preview 2.我们有很多重要改进要和你分享,而且我 ...
- centos环境自动化批量安装jdk软件脚本
自动化安装jdk软件部署脚本 准备工作: 1.在执行脚本的服务器上生成免密码公钥: 安装expect命令 yum install -y expect ssh-keygen 三次回车 2.将jdk-7u ...
- mybatis和spring整合的关键配置
spring配置文件 applicationContext.xml: <beans xmlns="http://www.springframework.org/schema/beans ...
- robots.txt、humans.txt、.editorconfig、.gitignore、LICENSE.txt、README.md、CHANGLOG.md
robots.txt搜索引擎查看的时候会查看这个文件,告诉搜索引擎哪些文件可以查看,哪些文件不能查看 当搜索引擎搜索网站的时候,会看有这个文件没,如果有,会通过里面的文件来确定哪些文件能看,哪些文件不 ...
- 彻底理解this指向-----实例分析
this的指向在函数创建的时候是决定不了的,在调用的时候才能决定,谁调用的就指向谁,一定要搞清楚这个. 情况1:如果一个函数中有this,但是它没有被上一级的对象所调用,那么this指向的就是wind ...
- visual studio 2017 installer 安装包制作过程出现的问题---无法注册模块 HRESULT -2147024769 请与您的技术支持人员联系
使用visual studio 2017 installer制作打包程序时如果用到了外部控件需要按以下方式操作: 1.将应用程序及应用程序所用到的所有DLL拷贝到打包目录,加入打包程序之中. 2.将应 ...
- OCM_第十三天课程:Section6 —》数据库性能调优 _结果缓存 /多列数据信息采集统计/采集数据信息保持游标有效
注:本文为原著(其内容来自 腾科教育培训课堂).阅读本文注意事项如下: 1:所有文章的转载请标注本文出处. 2:本文非本人不得用于商业用途.违者将承当相应法律责任. 3:该系列文章目录列表: 一:&l ...