SPOJ.Visible Lattice Points(莫比乌斯反演)
/*
http://www.spoj.com/problems/VLATTICE/
题意:求一个n*n*n的晶体,有多少点可以在(0,0,0)处可以直接看到。
同BZOJ.2301
题目即要求gcd(i,j,k)=1的(i,j,k)数对个数,1<=i,j,k<=n
由于是立体,所以最后再算上平面的点和坐标轴上的三个点就行了
*/
#include<cstdio>
#include<cctype>
#define gc() getchar()
typedef long long LL;
const int N=1e6+3;
int P[N+3],cnt,mu[N+3],sum[N+3];
bool Not_P[N+3];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
void Init()
{
mu[1]=1;
for(int i=2;i<N;++i)
{
if(!Not_P[i]) P[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&i*P[j]<N;++j)
{
Not_P[i*P[j]]=1;
if(!(i%P[j])) {mu[i*P[j]]=0; break;}
mu[i*P[j]]=-mu[i];
}
}
for(int i=1;i<N;++i) sum[i]=sum[i-1]+mu[i];
}
int main()
{
Init();
int t=read(),n;
while(t--)
{
n=read();
LL ans=3;//坐标轴上的三个点
for(int nxt,i=1;i<=n;i=nxt+1)
nxt=n/(n/i), ans+=1LL*(sum[nxt]-sum[i-1])*(n/i)*(n/i)*(n/i+3);//立体空间内的和三个平面的
printf("%lld\n",ans);
}
return 0;
}
SPOJ.Visible Lattice Points(莫比乌斯反演)的更多相关文章
- SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)
Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...
- spoj 7001 Visible Lattice Points莫比乌斯反演
Visible Lattice Points Time Limit:7000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Su ...
- spoj7001 Visible Lattice Points 莫比乌斯反演+三维空间互质对数
/** 题目:Visible Lattice Points 链接:https://vjudge.net/contest/178455#problem/A 题意:一个n*n*n大小的三维空间.一侧为(0 ...
- SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演 难度:3
http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x ...
- SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演
这样的点分成三类 1 不含0,要求三个数的最大公约数为1 2 含一个0,两个非零数互质 3 含两个0,这样的数只有三个,可以讨论 针对 1情况 定义f[n]为所有满足三个数最大公约数为n的三元组数量 ...
- SPOJ 7001 Visible Lattice Points (莫比乌斯反演)
题意:求一个正方体里面,有多少个顶点可以在(0,0,0)位置直接看到,而不被其它点阻挡.也就是说有多少个(x,y,z)组合,满足gcd(x,y,z)==1或有一个0,另外的两个未知数gcd为1 定义f ...
- Spoj 7001 Visible Lattice Points 莫比乌斯,分块
题目:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37193 Visible Lattice Points Time L ...
- spoj 7001. Visible Lattice Points GCD问题 莫比乌斯反演
SPOJ Problem Set (classical) 7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N la ...
- SPOJ 7001. Visible Lattice Points (莫比乌斯反演)
7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...
随机推荐
- python f-string
文章目录 1. 主要内容 1.1. 旧时代的格式化字符串 1.1.1. Option #1: %-formatting 1.1.2. 怎样使用 %-formatting 1.1.3. 为什么 %-fo ...
- Faster rcnn代码理解(3)
紧接着之前的博客,我们继续来看faster rcnn中的AnchorTargetLayer层: 该层定义在lib>rpn>中,见该层定义: 首先说一下这一层的目的是输出在特征图上所有点的a ...
- 安装VNC
一.安装相应桌面环境与vnc服务端和客户端: # yum groupinstall "GNOME Desktop Environment"(CentOS 5.x安装GNOME桌面环 ...
- High level GPU programming in C++
https://github.com/prem30488/C2CUDATranslator http://www.training.prace-ri.eu/uploads/tx_pracetmo/GP ...
- js里的回调函数
function a(callback) // 定义一个函数 ,需要传入的参数是callback 然后callback的类型为一个函数{console.log("callback还表示传 ...
- kafka系列十、kafka常用管理命令
一.Topic管理 1.创建topic kafka-topics.sh --zookeeper 47.52.199.52:2181 --create --topic test-15 --replica ...
- 【实践】Matlab2016a的mdce集群搭建
Matlab R2016a的mdce集群搭建 1.解压文件Matlab_R2016b_win64.iso. 文件下载地址:链接:https://pan.baidu.com/s/1mjJOaHa 密码: ...
- windows系统中搭建Jenkins服务器
1 须知 100.126.36.232等Jenkins服务器是通过设置代理访问外网,管理Jenkins和插件升级站点的,本地安装受黄区网络限制需要特殊配置,且有些插件无法下载. 前提条件: ...
- 最大流算法-最高标号预流推进(HLPP)
昨天我们学习了ISAP算法,它属于增广路算法的大类.今天学习的算法是预流推进算法中很高效的一类--最高标号预流推进(HLPP). 预流推进 预流推进是一种很直观的网络流算法.如果给到一个网络流让你手算 ...
- React-Native 之 网络请求 fetch
前言 学习本系列内容需要具备一定 HTML 开发基础,没有基础的朋友可以先转至 HTML快速入门(一) 学习 本人接触 React Native 时间并不是特别长,所以对其中的内容和性质了解可能会有所 ...